Barberá-Guillem E, Rocha M, Alvarez A, Vidal-Vanaclocha F
Department of Cell Biology and Morphological Sciences, School of Medicine and Dentistry, University of the Basque Country, Leioa, Vizcaya, Spain.
Hepatology. 1991 Jul;14(1):131-9. doi: 10.1002/hep.1840140122.
We have studied the distribution patterns of carbohydrate terminals on the endothelial surface of the mouse liver microvasculature. For this purpose, a wide battery of FITC lectins specific to glucose, mannose, galactose, fucose, N-acetyl-neuraminic acid, N-acetyl-galactosamine and N-acetyl-glucosamine residues were incubated on liver cryostat sections or intraportally perfused under physiological conditions. All the resulting hepatic sections were examined under fluorescent microscopy and confocal laser scanning microscopy. With the exception of N-acetyl-galactosamine- and fucose-binding lectins, all the perfused lectins specifically bound to the microvascular wall as confirmed by blocking methods using their corresponding sugars. A wide range of binding was, however, observed among the lectins, and the latter were classified into four groups according to their affinities for the different segments of the hepatic microvasculature: (a) equal affinity for all segments (concanavalin A); (b) different affinities depending on acinar zone (wheat germ agglutinin, Ricinus communis toxin, phytohemagglutinin E, Erythrina cristagalli agglutinin and Pisum sativum agglutinin); (c) preferential binding to the sinusoidal network (Lathyrus odoratus, phytohemagglutinin); and (d) lectins that fail to bind to the hepatic microvasculature (N-acetyl-galactosamine- and fucose-binding lectins). Sinusoidal segment walls in acinar zone 1 expressed a higher concentration of certain lectin-binding carbohydrate residues (N-acetyl-neuraminic acid, N-acetyl-galactosamine, galactose, mannose and glucose) than in acinar zone 3. The labeling patterns obtained through the incubation of liver sections or through in vivo perfusion with the different lectins did not always coincide. Only concanavalin A, wheat germ agglutinin and phytohemagglutinin E lectins proved to be concordant (i.e., they produced identical labeling patterns in both procedures).(ABSTRACT TRUNCATED AT 250 WORDS)
我们研究了小鼠肝脏微血管内皮表面碳水化合物末端的分布模式。为此,将一系列针对葡萄糖、甘露糖、半乳糖、岩藻糖、N - 乙酰神经氨酸、N - 乙酰半乳糖胺和N - 乙酰葡糖胺残基的异硫氰酸荧光素(FITC)凝集素在肝脏低温切片上孵育,或在生理条件下经门静脉灌注。所有得到的肝脏切片均在荧光显微镜和共聚焦激光扫描显微镜下检查。除了与N - 乙酰半乳糖胺和岩藻糖结合的凝集素外,所有灌注的凝集素都通过使用其相应糖类的阻断方法证实特异性结合微血管壁。然而,在凝集素之间观察到广泛的结合差异,根据它们对肝脏微血管不同节段的亲和力,后者被分为四组:(a)对所有节段具有同等亲和力(伴刀豆球蛋白A);(b)根据腺泡区具有不同亲和力(麦胚凝集素、蓖麻毒素、植物血凝素E、刺桐凝集素和豌豆凝集素);(c)优先结合窦状网络(香豌豆、植物血凝素);(d)未能结合肝脏微血管的凝集素(与N - 乙酰半乳糖胺和岩藻糖结合的凝集素)。腺泡1区的窦状节段壁比腺泡3区表达更高浓度的某些凝集素结合碳水化合物残基(N - 乙酰神经氨酸、N - 乙酰半乳糖胺、半乳糖、甘露糖和葡萄糖)。通过肝脏切片孵育或用不同凝集素进行体内灌注获得的标记模式并不总是一致的。只有伴刀豆球蛋白A、麦胚凝集素和植物血凝素E凝集素被证明是一致的(即,它们在两种程序中产生相同的标记模式)。(摘要截短于250字)