Lee Youngjoo, Seo Joon Beom, Lee June Goo, Kim Song Soo, Kim Namkug, Kang Suk Ho
Department of Industrial Engineering, Seoul National University, Seoul 151-742, Republic of Korea.
Comput Methods Programs Biomed. 2009 Feb;93(2):206-15. doi: 10.1016/j.cmpb.2008.10.008. Epub 2008 Dec 13.
Machine classifiers have been used to automate quantitative analysis and avoid intra-inter-reader variability in previous studies. The selection of an appropriate classification scheme is important for improving performance based on the characteristics of the data set. This paper investigated the performance of several machine classifiers for differentiating obstructive lung diseases using texture analysis on various ROI (region of interest) sizes. 265 high-resolution computerized tomography (HRCT) images were taken from 92 subjects. On each image, two experienced radiologists selected ROIs with various sizes representing area of severe centrilobular emphysema (PLE, n=63), mild centrilobular emphysema (CLE, n=65), bronchiolitis obliterans (BO, n=70) or normal lung (NL, n=67). Four machine classifiers were implemented: naïve Bayesian classifier, Bayesian classifier, ANN (artificial neural net) and SVM (support vector machine). For a testing method, 5-fold cross-validation methods were used and each validation was repeated 20 times. The SVM had the best performance in overall accuracy (in ROI size of 32x32 and 64x64) (t-test, p<0.05). There was no significant overall accuracy difference between Bayesian and ANN (t-test, p<0.05). The naïve Bayesian method performed significantly worse than the other classifiers (t-test, p<0.05). SVM showed the best performance for classification of the obstructive lung diseases in this study.
在以往的研究中,机器分类器已被用于实现定量分析自动化,并避免阅片者之间和阅片者内部的变异性。基于数据集的特征选择合适的分类方案对于提高性能很重要。本文使用不同感兴趣区域(ROI)大小的纹理分析,研究了几种机器分类器对阻塞性肺疾病的鉴别性能。从92名受试者获取了265张高分辨率计算机断层扫描(HRCT)图像。在每张图像上,两名经验丰富的放射科医生选择了不同大小的感兴趣区域,分别代表严重小叶中心型肺气肿区域(PLE,n = 63)、轻度小叶中心型肺气肿区域(CLE,n = 65)、闭塞性细支气管炎区域(BO,n = 70)或正常肺区域(NL,n = 67)。实施了四种机器分类器:朴素贝叶斯分类器、贝叶斯分类器、人工神经网络(ANN)和支持向量机(SVM)。对于测试方法,使用了5折交叉验证方法,且每次验证重复20次。支持向量机在总体准确率方面表现最佳(感兴趣区域大小为32x32和64x64时)(t检验,p<0.05)。贝叶斯分类器和人工神经网络之间在总体准确率上没有显著差异(t检验,p<0.05)。朴素贝叶斯方法的表现明显比其他分类器差(t检验,p<0.05)。在本研究中,支持向量机在阻塞性肺疾病分类方面表现出最佳性能。