Suppr超能文献

基于纹理的自动化定量分析胸部 CT 图像中的中心小叶结节和中心小叶肺气肿。

Automated texture-based quantification of centrilobular nodularity and centrilobular emphysema in chest CT images.

机构信息

Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

出版信息

Acad Radiol. 2012 Oct;19(10):1241-51. doi: 10.1016/j.acra.2012.04.020.

Abstract

RATIONALE AND OBJECTIVES

Characterization of smoking-related lung disease typically consists of visual assessment of chest computed tomographic (CT) images for the presence and extent of emphysema and centrilobular nodularity (CN). Quantitative analysis of emphysema and CN may improve the accuracy, reproducibility, and efficiency of chest CT scoring. The purpose of this study was to develop a fully automated texture-based system for the detection and quantification of centrilobular emphysema (CLE) and CN in chest CT images.

MATERIALS AND METHODS

A novel approach was used to prepare regions of interest (ROIs) within the lung parenchyma for representation by texture features associated with the gray-level run-length and gray-level gap-length methods. These texture features were used to train a multiple logistic regression classifier to discriminate between normal lung tissue, CN or "smoker's lung," and CLE. This classifier was trained and evaluated on 24 and 71 chest CT scans, respectively.

RESULTS

During training, the classifier correctly classified 89% of ROIs depicting normal lung tissue, 74% of ROIs depicting CN, and 95% of ROIs manifesting CLE. When the performance of the classifier in quantifying extent of CN and CLE was evaluated on 71 chest CT scans, 65% of ROIs in smokers without CLE were classified as CN, compared to 31% in nonsmokers (P < .001) and 28% in smokers with CLE (P < .001).

CONCLUSIONS

The texture-based framework described herein facilitates successful discrimination among normal lung tissue, CN, and CLE and can be used for the automated quantification of smoking-related lung disease.

摘要

背景与目的

吸烟相关性肺部疾病的特征通常包括对胸部 CT 图像进行视觉评估,以确定肺气肿和中央小叶结节(CN)的存在和程度。对肺气肿和 CN 进行定量分析可能会提高胸部 CT 评分的准确性、可重复性和效率。本研究的目的是开发一种完全自动化的基于纹理的系统,用于检测和定量胸部 CT 图像中的中央小叶肺气肿(CLE)和 CN。

材料与方法

采用一种新方法在肺实质内准备感兴趣区域(ROI),通过与灰度游程和灰度间隙长度方法相关的纹理特征来表示。这些纹理特征用于训练一个多逻辑回归分类器,以区分正常肺组织、CN 或“吸烟者肺”和 CLE。该分类器分别在 24 个和 71 个胸部 CT 扫描上进行了训练和评估。

结果

在训练过程中,分类器正确分类了 89%的正常肺组织 ROI、74%的 CN ROI 和 95%的 CLE 表现 ROI。当在 71 个胸部 CT 扫描上评估分类器对 CN 和 CLE 程度的量化性能时,65%的无 CLE 吸烟者的 ROI 被分类为 CN,而不吸烟者为 31%(P<0.001),吸烟者为 28%(P<0.001)。

结论

本文所述的基于纹理的框架可成功区分正常肺组织、CN 和 CLE,可用于自动定量评估吸烟相关性肺部疾病。

相似文献

5
A texton-based approach for the classification of lung parenchyma in CT images.一种基于纹理基元的CT图像中肺实质分类方法。
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):595-602. doi: 10.1007/978-3-642-15711-0_74.
9
Learning COPD sensitive filters in pulmonary CT.在肺部CT中学习慢性阻塞性肺疾病敏感滤器。
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):699-706. doi: 10.1007/978-3-642-04271-3_85.

引用本文的文献

4
The Emerging Role of Radiomics in COPD and Lung Cancer.放射组学在 COPD 和肺癌中的新兴作用。
Respiration. 2020;99(2):99-107. doi: 10.1159/000505429. Epub 2020 Jan 28.
5
Automatic emphysema detection using weakly labeled HRCT lung images.利用弱标注 HRCT 肺图像进行自动肺气肿检测。
PLoS One. 2018 Oct 15;13(10):e0205397. doi: 10.1371/journal.pone.0205397. eCollection 2018.
7
Lung densitometry: why, how and when.肺密度测定法:为何、如何及何时进行
J Thorac Dis. 2017 Sep;9(9):3319-3345. doi: 10.21037/jtd.2017.08.17.
8
Progress in Imaging COPD, 2004 - 2014.慢性阻塞性肺疾病的影像学进展,2004 - 2014年
Chronic Obstr Pulm Dis. 2014 May 6;1(1):73-82. doi: 10.15326/jcopdf.1.1.2014.0125.

本文引用的文献

9
Fleischner Society: glossary of terms for thoracic imaging.弗莱施纳学会:胸部影像学术语词汇表。
Radiology. 2008 Mar;246(3):697-722. doi: 10.1148/radiol.2462070712. Epub 2008 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验