Terenzi Fulvia, Brimacombe Kyle R, Penn Marc S, Ladd Andrea N
Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave. NC10, Cleveland, OH 44195, USA.
J Mol Cell Cardiol. 2009 Mar;46(3):395-404. doi: 10.1016/j.yjmcc.2008.10.030. Epub 2008 Nov 24.
During the transition from juvenile to adult life, the heart undergoes programmed remodeling at the levels of transcription and alternative splicing. Members of the CUG-BP and ETR-3-like factor (CELF) family have been implicated in driving developmental transitions in alternative splicing of cardiac transcripts during maturation of the heart. Here, we investigated the timing of the requirement for CELF activity in the postnatal heart using a previously described transgenic mouse model (MHC-CELFDelta). In MHC-CELFDelta mice, nuclear CELF activity has been disrupted specifically in the heart by cardiac-specific expression of a dominant negative CELF protein. Longitudinal analyses of two lines of MHC-CELFDelta mice with differing levels of dominant negative protein expression demonstrate that CELF splicing activity is required for healthy cardiac function during juvenile, but not adult, life. Cardiac function, chamber dilation, and heart size all recover with age in the mild line of MHC-CELFDelta mice without a loss of dominant negative protein expression or change in expression of endogenous CELF proteins or known CELF antagonists. This is the first example of a mouse model with genetically induced cardiomyopathy that spontaneously recovers without intervention. Our results suggest that CELF proteins are key players in the integrated gene expression program involved in postnatal cardiac remodeling and maturation.
在从幼年到成年的过渡阶段,心脏在转录和可变剪接水平上经历程序性重塑。CUG-BP和ETR-3样因子(CELF)家族成员在心脏成熟过程中驱动心脏转录本可变剪接的发育转变。在此,我们使用先前描述的转基因小鼠模型(MHC-CELFDelta)研究了出生后心脏中CELF活性需求的时间。在MHC-CELFDelta小鼠中,通过心脏特异性表达显性负性CELF蛋白,心脏中的核CELF活性被特异性破坏。对两系具有不同显性负性蛋白表达水平的MHC-CELFDelta小鼠的纵向分析表明,CELF剪接活性在幼年而非成年期对心脏的正常功能是必需的。在MHC-CELFDelta小鼠的轻度品系中,心脏功能、心室扩张和心脏大小均随年龄增长而恢复,且显性负性蛋白表达未丢失,内源性CELF蛋白或已知CELF拮抗剂的表达也未改变。这是首例未经干预而自发恢复的基因诱导型心肌病小鼠模型。我们的结果表明,CELF蛋白是参与出生后心脏重塑和成熟的综合基因表达程序中的关键因子。