Suppr超能文献

神经元功能障碍中的氧化应激与能量危机

Oxidative stress and energy crises in neuronal dysfunction.

作者信息

Nicholls David G

机构信息

Buck Institute for Age Research, Novato, CA 94945, USA.

出版信息

Ann N Y Acad Sci. 2008 Dec;1147:53-60. doi: 10.1196/annals.1427.002.

Abstract

Mitochondrial dysfunction is implicated in many forms of cell death, particularly in the central nervous system. The mitochondria are required at the same time to generate adenosine 5'-triphosphate (ATP) for the cell, sequester excess cytoplasmic Ca(2+), and both produce and detoxify superoxide free radicals. The electron transport chain and proton circuit are central in keeping these three balls in the air at the same time. We have investigated the bioenergetics of the in situ mitochondria in cultured neurons exposed to pathological glutamate concentrations to model glutamate excitotoxicity and have revised the conventional view that mitochondrial calcium loading results in increased oxidative stress that damages the mitochondrion and ultimately the cell. Instead, a central role is played under these conditions by limitations in mitochondrial and cellular ATP generating capacity. Sodium and calcium entering via the N-methyl-D-aspartate receptor impose a large energetic load on cells and can use the entire respiratory capacity of the in situ mitochondria. As a result, even modest restrictions in mitochondrial capacity -- caused by low concentrations of electron transport chain inhibitors such as rotenone, as in models of Parkinson's disease; low concentrations of uncouplers, to test the so-called neuroprotective mild uncoupling hypothesis; or preexisting oxidative stress -- greatly potentiate glutamate excitotoxicity. Our findings may lead to a reevaluation of the potential for mild uncoupling to provide a neuroprotective role in aging-related neurodegenerative disorders because the deleterious consequences of restricting ATP generating capacity greatly outweigh the negligible effects on the levels of mitochondrial superoxide radicals in intact neurons.

摘要

线粒体功能障碍与多种形式的细胞死亡有关,尤其是在中枢神经系统中。线粒体同时需要为细胞生成三磷酸腺苷(ATP),隔离过量的细胞质Ca(2+),并产生和清除超氧自由基。电子传递链和质子回路对于同时维持这三个功能至关重要。我们研究了暴露于病理性谷氨酸浓度的培养神经元中原位线粒体的生物能量学,以模拟谷氨酸兴奋性毒性,并修正了传统观点,即线粒体钙超载会导致氧化应激增加,从而损害线粒体并最终损害细胞。相反,在这些条件下,线粒体和细胞ATP生成能力的限制起着核心作用。通过N-甲基-D-天冬氨酸受体进入的钠和钙给细胞带来了巨大的能量负荷,并可以利用原位线粒体的全部呼吸能力。因此,即使是线粒体能力的适度限制——如在帕金森病模型中由低浓度的电子传递链抑制剂鱼藤酮引起;低浓度的解偶联剂,以测试所谓的神经保护轻度解偶联假说;或预先存在的氧化应激——都会大大增强谷氨酸兴奋性毒性。我们的发现可能会导致对轻度解偶联在衰老相关神经退行性疾病中提供神经保护作用的潜力进行重新评估,因为限制ATP生成能力的有害后果远远超过对完整神经元中线粒体超氧自由基水平的可忽略不计的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验