Suppr超能文献

培养神经元中线粒体的生物能量学及其在谷氨酸兴奋性毒性中的作用。

Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity.

作者信息

Nicholls David G, Johnson-Cadwell Linda, Vesce Sabino, Jekabsons Mika, Yadava Nagendra

机构信息

Buck Institute for Age Research, Novato, CA 94945, USA.

出版信息

J Neurosci Res. 2007 Nov 15;85(15):3206-12. doi: 10.1002/jnr.21290.

Abstract

The pathologic activation of NMDA receptors by glutamate is a major contributor to neuronal cell death after stroke. Receptor activation causes a massive influx of calcium into the neuron that is accumulated by the mitochondria. The favored hypothesis is that the calcium loaded mitochondria generate reactive oxygen species that damage and ultimately killed the neuron. In this review this hypothesis is critically re-examined with an emphasis on the role played by deficits in ATP generation. Novel techniques are developed to monitor the bioenergetic status of in situ mitochondria in cultured neurons. Applying these techniques to a model of glutamate excitotoxicity suggests that enhanced reactive oxygen species are a consequence rather than a cause of failed cytoplasmic calcium homeostasis (delayed calcium deregulation, [DCD]), but that prior oxidative damage facilitates DCD by damaging mitochondrial ATP generation. This impacts on current hypotheses relating to the neuroprotective effects of mild mitochondrial uncoupling.

摘要

谷氨酸对NMDA受体的病理性激活是中风后神经元细胞死亡的主要原因。受体激活导致大量钙离子流入神经元,并被线粒体积累。一种流行的假说是,钙离子过载的线粒体产生活性氧,从而损伤并最终杀死神经元。在这篇综述中,对这一假说进行了批判性的重新审视,重点关注了ATP生成缺陷所起的作用。开发了新技术来监测培养神经元中原位线粒体的生物能量状态。将这些技术应用于谷氨酸兴奋性毒性模型表明,活性氧增加是细胞质钙稳态失衡(延迟钙失调,[DCD])的结果而非原因,但先前的氧化损伤通过破坏线粒体ATP生成促进了DCD。这对当前有关轻度线粒体解偶联神经保护作用的假说产生了影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验