Suppr超能文献

一个排斥场:离子氛围静电学的进展

A repulsive field: advances in the electrostatics of the ion atmosphere.

作者信息

Chu Vincent B, Bai Yu, Lipfert Jan, Herschlag Daniel, Doniach Sebastian

机构信息

Department of Applied Physics, Stanford University, GLAM, McCullough 318, 476 Lomita Mall, Stanford, CA 94305, USA.

出版信息

Curr Opin Chem Biol. 2008 Dec;12(6):619-25. doi: 10.1016/j.cbpa.2008.10.010. Epub 2008 Dec 8.

Abstract

The large electrostatic repulsion arising from the negatively charged backbone of RNA molecules presents a large barrier to folding. Solution counterions assist in the folding process by screening this electrostatic repulsion. While early research interpreted the effect of these counterions in terms of an empirical ligand-binding model, theories based on physical models have supplanted them and revised our view of the roles that ions play in folding. Instead of specific ion-binding sites, most ions in solution interact inside an 'ion atmosphere'--a fluctuating cloud of nonspecifically associated ions surrounding any charged molecule. Recent advances in experiments have begun the task of characterizing the ion atmosphere, yielding valuable data that have revealed deficiencies in Poisson-Boltzmann theory, the most widely used theory of the ion atmosphere. The continued development of experiments will help guide the development of improved theories, with the ultimate goal of understanding RNA folding and function and nucleic acid/protein interactions from a quantitative perspective.

摘要

RNA分子带负电荷的主链产生的巨大静电排斥力对其折叠形成了巨大障碍。溶液中的抗衡离子通过屏蔽这种静电排斥力来协助折叠过程。早期研究根据经验性配体结合模型来解释这些抗衡离子的作用,而基于物理模型的理论已取而代之,并修正了我们对离子在折叠中所起作用的看法。溶液中的大多数离子并非通过特定的离子结合位点相互作用,而是在“离子氛围”中相互作用——这是围绕任何带电分子的一团波动的非特异性相关离子云。实验方面的最新进展已开始对离子氛围进行表征,产生了有价值的数据,揭示了泊松-玻尔兹曼理论(最广泛使用的离子氛围理论)存在的缺陷。实验的持续发展将有助于指导改进理论的发展,最终目标是从定量角度理解RNA折叠与功能以及核酸/蛋白质相互作用。

相似文献

1
A repulsive field: advances in the electrostatics of the ion atmosphere.一个排斥场:离子氛围静电学的进展
Curr Opin Chem Biol. 2008 Dec;12(6):619-25. doi: 10.1016/j.cbpa.2008.10.010. Epub 2008 Dec 8.
2
Understanding nucleic acid-ion interactions.理解核酸与离子的相互作用。
Annu Rev Biochem. 2014;83:813-41. doi: 10.1146/annurev-biochem-060409-092720. Epub 2014 Mar 5.
3
Quantitative Studies of an RNA Duplex Electrostatics by Ion Counting.离子计数法定量研究 RNA 双链静电作用。
Biophys J. 2019 Sep 17;117(6):1116-1124. doi: 10.1016/j.bpj.2019.08.007. Epub 2019 Aug 12.
6
Dynamics of Ionic Interactions at Protein-Nucleic Acid Interfaces.蛋白质-核酸界面处离子相互作用的动力学。
Acc Chem Res. 2020 Sep 15;53(9):1802-1810. doi: 10.1021/acs.accounts.0c00212. Epub 2020 Aug 26.
7
Electrostatics of nucleic acid folding under conformational constraint.构象约束下核酸折叠的静电学。
J Am Chem Soc. 2012 Mar 14;134(10):4607-14. doi: 10.1021/ja208466h. Epub 2012 Feb 27.
9
10
Predicting electrostatic forces in RNA folding.预测RNA折叠中的静电力。
Methods Enzymol. 2009;469:465-87. doi: 10.1016/S0076-6879(09)69022-4. Epub 2009 Nov 17.

引用本文的文献

1
Structural Prediction of Coronavirus s2m Kissing Complexes and Extended Duplexes.冠状病毒s2m接吻复合体和延伸双链体的结构预测
ACS Phys Chem Au. 2025 Jun 5;5(4):410-424. doi: 10.1021/acsphyschemau.5c00031. eCollection 2025 Jul 23.
6
Alternative RNA Conformations: Companion or Combatant.RNA 的其他构象:伙伴还是对手。
Genes (Basel). 2022 Oct 23;13(11):1930. doi: 10.3390/genes13111930.
7
RNA Electrostatics: How Ribozymes Engineer Active Sites to Enable Catalysis.RNA 静电学:核酶如何设计活性部位以实现催化。
J Phys Chem B. 2022 Aug 18;126(32):5982-5990. doi: 10.1021/acs.jpcb.2c03727. Epub 2022 Jul 21.
9
Detecting Counterion Dynamics in DNA-Protein Association.检测 DNA-蛋白质结合中的反离子动力学。
Angew Chem Int Ed Engl. 2020 Jan 20;59(4):1465-1468. doi: 10.1002/anie.201910960. Epub 2019 Dec 3.
10
The roles of structural dynamics in the cellular functions of RNAs.结构动力学在 RNA 细胞功能中的作用。
Nat Rev Mol Cell Biol. 2019 Aug;20(8):474-489. doi: 10.1038/s41580-019-0136-0.

本文引用的文献

10
RNA helix stability in mixed Na+/Mg2+ solution.混合Na+/Mg2+溶液中RNA螺旋的稳定性
Biophys J. 2007 May 15;92(10):3615-32. doi: 10.1529/biophysj.106.100388. Epub 2007 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验