Chu Vincent B, Bai Yu, Lipfert Jan, Herschlag Daniel, Doniach Sebastian
Department of Applied Physics, Stanford University, GLAM, McCullough 318, 476 Lomita Mall, Stanford, CA 94305, USA.
Curr Opin Chem Biol. 2008 Dec;12(6):619-25. doi: 10.1016/j.cbpa.2008.10.010. Epub 2008 Dec 8.
The large electrostatic repulsion arising from the negatively charged backbone of RNA molecules presents a large barrier to folding. Solution counterions assist in the folding process by screening this electrostatic repulsion. While early research interpreted the effect of these counterions in terms of an empirical ligand-binding model, theories based on physical models have supplanted them and revised our view of the roles that ions play in folding. Instead of specific ion-binding sites, most ions in solution interact inside an 'ion atmosphere'--a fluctuating cloud of nonspecifically associated ions surrounding any charged molecule. Recent advances in experiments have begun the task of characterizing the ion atmosphere, yielding valuable data that have revealed deficiencies in Poisson-Boltzmann theory, the most widely used theory of the ion atmosphere. The continued development of experiments will help guide the development of improved theories, with the ultimate goal of understanding RNA folding and function and nucleic acid/protein interactions from a quantitative perspective.
RNA分子带负电荷的主链产生的巨大静电排斥力对其折叠形成了巨大障碍。溶液中的抗衡离子通过屏蔽这种静电排斥力来协助折叠过程。早期研究根据经验性配体结合模型来解释这些抗衡离子的作用,而基于物理模型的理论已取而代之,并修正了我们对离子在折叠中所起作用的看法。溶液中的大多数离子并非通过特定的离子结合位点相互作用,而是在“离子氛围”中相互作用——这是围绕任何带电分子的一团波动的非特异性相关离子云。实验方面的最新进展已开始对离子氛围进行表征,产生了有价值的数据,揭示了泊松-玻尔兹曼理论(最广泛使用的离子氛围理论)存在的缺陷。实验的持续发展将有助于指导改进理论的发展,最终目标是从定量角度理解RNA折叠与功能以及核酸/蛋白质相互作用。