文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Polymeric nanoparticles-Promising carriers for cancer therapy.

作者信息

Xiao Xiao, Teng Fei, Shi Changkuo, Chen Junyu, Wu Shuqing, Wang Bao, Meng Xiang, Essiet Imeh Aniekan, Li Wenliang

机构信息

School of Pharmacy, Jilin Medical University, Jilin, China.

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China.

出版信息

Front Bioeng Biotechnol. 2022 Oct 7;10:1024143. doi: 10.3389/fbioe.2022.1024143. eCollection 2022.


DOI:10.3389/fbioe.2022.1024143
PMID:36277396
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9585261/
Abstract

Polymeric nanoparticles (NPs) play an important role in controlled cancer drug delivery. Anticancer drugs can be conjugated or encapsulated by polymeric nanocarriers, which are known as polymeric nanomedicine. Polymeric nanomedicine has shown its potential in providing sustained release of drugs with reduced cytotoxicity and modified tumor retention, but until now, few delivery systems loading drugs have been able to meet clinical demands, so more efforts are needed. This research reviews the current state of the cancer drug-loading system by exhibiting a series of published articles that highlight the novelty and functions from a variety of different architectures including micelles, liposomes, dendrimers, polymersomes, hydrogels, and metal-organic frameworks. These may contribute to the development of useful polymeric NPs to achieve different therapeutic purposes.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/d60ecb38a0de/fbioe-10-1024143-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/f0fea7c1fa81/fbioe-10-1024143-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/cfe8fed56f00/fbioe-10-1024143-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/1b4ab0de5238/fbioe-10-1024143-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/194c8413ab19/fbioe-10-1024143-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/821184ad2018/fbioe-10-1024143-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/850270566ed5/fbioe-10-1024143-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/80470c6d18aa/fbioe-10-1024143-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/d60ecb38a0de/fbioe-10-1024143-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/f0fea7c1fa81/fbioe-10-1024143-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/cfe8fed56f00/fbioe-10-1024143-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/1b4ab0de5238/fbioe-10-1024143-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/194c8413ab19/fbioe-10-1024143-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/821184ad2018/fbioe-10-1024143-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/850270566ed5/fbioe-10-1024143-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/80470c6d18aa/fbioe-10-1024143-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50cf/9585261/d60ecb38a0de/fbioe-10-1024143-g008.jpg

相似文献

[1]
Polymeric nanoparticles-Promising carriers for cancer therapy.

Front Bioeng Biotechnol. 2022-10-7

[2]
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.

Eur J Pharm Biopharm. 2015-6

[3]
Ultrasound-Mediated Cancer Therapeutics Delivery using Micelles and Liposomes: A Review.

Recent Pat Anticancer Drug Discov. 2021

[4]
Nano drug-delivery systems for management of AIDS: liposomes, dendrimers, gold and silver nanoparticles.

Nanomedicine (Lond). 2023-2

[5]
Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery.

Pharmacol Ther. 2006-12

[6]
Recent Nanocarrier Approaches for Targeted Drug Delivery in Cancer Therapy.

Curr Mol Pharmacol. 2021

[7]
Preparation and application of pH-responsive drug delivery systems.

J Control Release. 2022-8

[8]
Thermo- and pH dual responsive polymeric micelles and nanoparticles.

Chem Biol Interact. 2018-7-20

[9]
Decoration of gold nanoparticles with thiolated pH-responsive polymeric (PEG-b-p(2-dimethylamio ethyl methacrylate-co-itaconic acid) shell: A novel platform for targeting of anticancer agent.

Mater Sci Eng C Mater Biol Appl. 2017-12-1

[10]
Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis.

Polymers (Basel). 2020-6-22

引用本文的文献

[1]
Carbon Dots for Nucleic Acid-Based Diagnostics and Therapeutics: Focus on Oxidative DNA Damage.

Int J Mol Sci. 2025-8-21

[2]
Recent advancement of fisetin-based nanoformulations in the management of psoriasis.

Discov Nano. 2025-7-7

[3]
Zonisamide nanodiamonds for brain targeting: A comprehensive study utilising in silico, in vitro, in vivo, and molecular investigation for successful nose-to-brain delivery for epilepsy management.

Drug Deliv Transl Res. 2025-7-5

[4]
Riding the wave of innovation: nanotechnology in nucleic acid-based cancer therapy.

3 Biotech. 2025-7

[5]
Balancing Regeneration and Resistance: Targeting DCLK1 to Mitigate Gastrointestinal Radiation Injury and Oncogenesis.

Cancers (Basel). 2025-6-19

[6]
In Silico, In Vitro, and In Vivo Investigations of Anticancer Properties of a Novel Platinum (II) Complex and Its PLGA Encapsulated Form.

Bioinorg Chem Appl. 2025-5-25

[7]
Carbon nanotubes/ordered mesoporous carbon/chitosan nanocomposite as a promising carrier for everolimus targeted delivery toward lung cancer cells.

J Mater Sci Mater Med. 2025-5-31

[8]
Advances in Materials Science for Precision Melanoma Therapy: Nanotechnology-Enhanced Drug Delivery Systems.

Pharmaceutics. 2025-2-24

[9]
Recent advancements in nanoparticles for cancer treatment.

Med Oncol. 2025-2-10

[10]
Breaking barriers: Smart vaccine platforms for cancer immunomodulation.

Cancer Commun (Lond). 2025-5

本文引用的文献

[1]
pH-Regulated Controlled Swelling and Sustained Release from the Core Functionalized Amphiphilic Block Copolymer Micelle.

ACS Macro Lett. 2013-9-17

[2]
Development and In Vitro/In Vivo Evaluation of pH-Sensitive Polymeric Nanoparticles Loaded Hydrogel for the Management of Psoriasis.

Nanomaterials (Basel). 2021-12-17

[3]
Mimicking the Biology of Engineered Protein and mRNA Nanoparticle Delivery Using a Versatile Microfluidic Platform.

Pharmaceutics. 2021-11-17

[4]
Cation-Free siRNA Micelles as Effective Drug Delivery Platform and Potent RNAi Nanomedicines for Glioblastoma Therapy.

Adv Mater. 2021-11

[5]
The success of nanomedicine.

Nano Today. 2020-3-20

[6]
A General Strategy for Instantaneous and Continuous Synthesis of Ultrasmall Metal-Organic Framework Nanoparticles.

Angew Chem Int Ed Engl. 2021-12-6

[7]
Application of Artificial Neural Networks to Predict the Intrinsic Solubility of Drug-Like Molecules.

Pharmaceutics. 2021-7-20

[8]
Purified mucins in drug delivery research.

Adv Drug Deliv Rev. 2021-11

[9]
Peptide-based supramolecular hydrogels for local drug delivery.

Adv Drug Deliv Rev. 2021-7

[10]
pH-Responsive Amphiphilic Polyether Micelles with Superior Stability for Smart Drug Delivery.

Biomacromolecules. 2021-5-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索