Stewart Derek A, Savić Ivana, Mingo Natalio
Cornell Nanoscale Facility, Cornell University, Ithaca, New York 14853, LITEN, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
Nano Lett. 2009 Jan;9(1):81-4. doi: 10.1021/nl802503q.
Isotopic composition can dramatically affect thermal transport in nanoscale heat conduits such as nanotubes and nanowires. A 50% increase in thermal conductivity for isotopically pure boron ((11)B) nitride nanotubes was recently measured, but the reason for this enhancement remains unclear. To address this issue, we examine thermal transport through boron nitride nanotubes using an atomistic Green's function transport formalism coupled with phonon properties calculated from density functional theory. We develop an independent scatterer model for (10)B defects to account for phonon isotope scattering found in natural boron nitride nanotubes. Phonon scattering from (10)B dramatically reduces phonon transport at higher frequencies and our model accounts for the experimentally observed enhancement in thermal conductivity.
同位素组成能够显著影响纳米级热导管(如纳米管和纳米线)中的热传输。最近测量发现,同位素纯的硼((11)B)氮化物纳米管的热导率提高了50%,但这种增强的原因仍不清楚。为了解决这个问题,我们使用原子格林函数输运形式理论,并结合从密度泛函理论计算得到的声子特性,来研究通过氮化硼纳米管的热传输。我们针对(10)B缺陷开发了一个独立散射体模型,以解释在天然氮化硼纳米管中发现的声子同位素散射现象。来自(10)B的声子散射在较高频率下会显著降低声子传输,而我们的模型解释了实验观察到的热导率增强现象。