Suppr超能文献

基于弱先验的对应传播

Correspondence propagation with weak priors.

作者信息

Wang Huan, Yan Shuicheng, Liu Jianzhuang, Tang Xiaoou, Huang Thomas S

机构信息

Department of Computer Science, Yale University, New Haven, CT 06511, USA.

出版信息

IEEE Trans Image Process. 2009 Jan;18(1):140-50. doi: 10.1109/TIP.2008.2006602.

Abstract

For the problem of image registration, the top few reliable correspondences are often relatively easy to obtain, while the overall matching accuracy may fall drastically as the desired correspondence number increases. In this paper, we present an efficient feature matching algorithm to employ sparse reliable correspondence priors for piloting the feature matching process. First, the feature geometric relationship within individual image is encoded as a spatial graph, and the pairwise feature similarity is expressed as a bipartite similarity graph between two feature sets; then the geometric neighborhood of the pairwise assignment is represented by a categorical product graph, along which the reliable correspondences are propagated; and finally a closed-form solution for feature matching is deduced by ensuring the feature geometric coherency as well as pairwise feature agreements. Furthermore, our algorithm is naturally applicable for incorporating manual correspondence priors for semi-supervised feature matching. Extensive experiments on both toy examples and real-world applications demonstrate the superiority of our algorithm over the state-of-the-art feature matching techniques.

摘要

对于图像配准问题,最初的几个可靠对应关系通常相对容易获得,然而随着所需对应关系数量的增加,整体匹配精度可能会急剧下降。在本文中,我们提出了一种高效的特征匹配算法,利用稀疏可靠对应关系先验来引导特征匹配过程。首先,将单个图像内的特征几何关系编码为空间图,将成对特征相似度表示为两个特征集之间的二分相似度图;然后,通过范畴积图表示成对匹配的几何邻域,并沿着该图传播可靠对应关系;最后,通过确保特征几何一致性以及成对特征一致性,推导出特征匹配的闭式解。此外,我们的算法自然适用于纳入手动对应关系先验以进行半监督特征匹配。在玩具示例和实际应用上进行的大量实验证明了我们的算法优于现有最先进的特征匹配技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验