Suppr超能文献

前列腺癌中的基质-上皮细胞相互作用

Stroma-epithelium crosstalk in prostate cancer.

作者信息

Niu Yi-Nong, Xia Shu-Jie

机构信息

Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.

出版信息

Asian J Androl. 2009 Jan;11(1):28-35. doi: 10.1038/aja.2008.39. Epub 2008 Dec 22.

Abstract

The critical role played by stroma-epithelium crosstalk in carcinogenesis and progression of prostate cancer has been increasingly recognized. These interactions are mediated by a variety of paracrine factors secreted by cancer cells and/or stromal cells. In human prostate cancer, reactive stroma is characterized by an increase in myofibroblasts and a corresponding amplification of extracellular matrix production and angiogenesis. Permanent genetic mutations have been reported in stromal cells as well as in tumour cells. Transforming growth factor-beta, vascular endothelial growth factor, platelet-derived growth factor and fibroblast growth factor signalling pathways are involved in the process of angiogenesis, whereas hepatocyte growth factor, insulin-like growth factor-1, epidermal growth factor, CXC12 and Interleukin-6 play active roles in the progression, androgen-independent conversion and distal metastasis of prostate cancer. Some soluble factors have reciprocal interactions with androgens and the androgen receptor (AR), and can even activate AR in the absence of the androgen ligand. In this article, we review the complex interactions between cancer cells and the surrounding microenvironment, and discuss the potential therapeutic targets in the stromal compartment of prostate cancer.

摘要

基质-上皮细胞相互作用在前列腺癌发生和进展中所起的关键作用已得到越来越多的认可。这些相互作用由癌细胞和/或基质细胞分泌的多种旁分泌因子介导。在人类前列腺癌中,反应性基质的特征是肌成纤维细胞增加以及细胞外基质产生和血管生成相应增强。基质细胞以及肿瘤细胞中均已报道存在永久性基因突变。转化生长因子-β、血管内皮生长因子、血小板衍生生长因子和成纤维细胞生长因子信号通路参与血管生成过程,而肝细胞生长因子、胰岛素样生长因子-1、表皮生长因子、CXC12和白细胞介素-6在前列腺癌的进展、雄激素非依赖性转化和远处转移中发挥积极作用。一些可溶性因子与雄激素和雄激素受体(AR)存在相互作用,甚至在没有雄激素配体的情况下也能激活AR。在本文中,我们综述了癌细胞与周围微环境之间的复杂相互作用,并讨论了前列腺癌基质区室中的潜在治疗靶点。

相似文献

1
Stroma-epithelium crosstalk in prostate cancer.
Asian J Androl. 2009 Jan;11(1):28-35. doi: 10.1038/aja.2008.39. Epub 2008 Dec 22.
3
The role of the stromal microenvironment in prostate cancer.
Semin Cancer Biol. 2005 Apr;15(2):132-7. doi: 10.1016/j.semcancer.2004.08.002. Epub 2004 Dec 30.
6
Growth factors and epithelial-stromal interactions in prostate cancer development.
Int Rev Cytol. 2000;199:65-116. doi: 10.1016/s0074-7696(00)99002-8.
9
The reactive stroma microenvironment and prostate cancer progression.
Endocr Relat Cancer. 2012 Oct 30;19(6):R187-204. doi: 10.1530/ERC-12-0085. Print 2012 Dec.
10
Role of the stromal microenvironment in carcinogenesis of the prostate.
Int J Cancer. 2003 Oct 20;107(1):1-10. doi: 10.1002/ijc.11335.

引用本文的文献

1
Patient-specific prostate tumour growth simulation: a first step towards the digital twin.
Front Physiol. 2024 Oct 30;15:1421591. doi: 10.3389/fphys.2024.1421591. eCollection 2024.
2
The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens.
Biomedicines. 2024 Jul 23;12(8):1636. doi: 10.3390/biomedicines12081636.
3
Differential tempol effects in prostatic cancer: angiogenesis and short- and long-term treatments.
J Mol Histol. 2024 Jun;55(3):253-264. doi: 10.1007/s10735-024-10187-4. Epub 2024 Mar 29.
7
Metabolic changes during prostate cancer development and progression.
J Cancer Res Clin Oncol. 2023 May;149(5):2259-2270. doi: 10.1007/s00432-022-04371-w. Epub 2022 Sep 23.
8
The application of 3D bioprinting in urological diseases.
Mater Today Bio. 2022 Aug 2;16:100388. doi: 10.1016/j.mtbio.2022.100388. eCollection 2022 Dec.
9
Molecular Characterization of Cancer Associated Fibroblasts in Prostate Cancer.
Cancers (Basel). 2022 Jun 14;14(12):2943. doi: 10.3390/cancers14122943.
10
Proteomic discovery of non-invasive biomarkers of localized prostate cancer using mass spectrometry.
Nat Rev Urol. 2021 Dec;18(12):707-724. doi: 10.1038/s41585-021-00500-1. Epub 2021 Aug 27.

本文引用的文献

2
Human prostate stromal cells stimulate increased PSA production in DHEA-treated prostate cancer epithelial cells.
J Steroid Biochem Mol Biol. 2008 Sep;111(3-5):240-6. doi: 10.1016/j.jsbmb.2008.06.008. Epub 2008 Jun 22.
3
Role of IGF-1/IGF-1R in regulation of invasion in DU145 prostate cancer cells.
Cancer Cell Int. 2008 Jul 3;8:10. doi: 10.1186/1475-2867-8-10.
4
Targeting the c-MET signaling pathway for cancer therapy.
Expert Opin Investig Drugs. 2008 Jul;17(7):997-1011. doi: 10.1517/13543784.17.7.997.
5
Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells.
Stem Cells. 2008 Jun;26(6):1425-35. doi: 10.1634/stemcells.2007-1076. Epub 2008 Apr 10.
6
Androgen receptor signalling in prostate: effects of stromal factors on normal and cancer stem cells.
Mol Cell Endocrinol. 2008 Jun 25;288(1-2):30-7. doi: 10.1016/j.mce.2008.02.024. Epub 2008 Mar 2.
7
HGF/SF up-regulates the expression of bone morphogenetic protein 7 in prostate cancer cells.
Urol Oncol. 2008 Mar-Apr;26(2):190-7. doi: 10.1016/j.urolonc.2007.03.027. Epub 2007 Nov 26.
8
Microenvironmental regulation of cancer development.
Curr Opin Genet Dev. 2008 Feb;18(1):27-34. doi: 10.1016/j.gde.2007.12.006. Epub 2008 Feb 20.
9
Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites.
Biochemistry. 2008 Jan 22;47(3):1076-86. doi: 10.1021/bi701921b. Epub 2007 Dec 21.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验