Pérez-Benito Ángela, García-Aznar José Manuel, Gómez-Benito María José, Pérez María Ángeles
Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
Front Physiol. 2024 Oct 30;15:1421591. doi: 10.3389/fphys.2024.1421591. eCollection 2024.
Prostate cancer (PCa) is a major world-wide health concern. Current diagnostic methods involve Prostate-Specific Antigen (PSA) blood tests, biopsies, and Magnetic Resonance Imaging (MRI) to assess cancer aggressiveness and guide treatment decisions. MRI aligns with medicine, as patient-specific image biomarkers can be obtained, contributing towards the development of digital twins for clinical practice. This work presents a novel framework to create a personalized PCa model by integrating clinical MRI data, such as the prostate and tumour geometry, the initial distribution of cells and the vasculature, so a full representation of the whole prostate is obtained. On top of the personalized model construction, our approach simulates and predicts temporal tumour growth in the prostate through the Finite Element Method, coupling the dynamics of tumour growth and the transport of oxygen, and incorporating cellular processes such as proliferation, differentiation, and apoptosis. In addition, our approach includes the simulation of the PSA dynamics, which allows to evaluate tumour growth through the PSA patient's levels. To obtain the model parameters, a multi-objective optimization process is performed to adjust the best parameters for two patients simultaneously. This framework is validated by means of data from four patients with several MRI follow-ups. The diagnosis MRI allows the model creation and initialization, while subsequent MRI-based data provide additional information to validate computational predictions. The model predicts prostate and tumour volumes growth, along with serum PSA levels. This work represents a preliminary step towards the creation of digital twins for PCa patients, providing personalized insights into tumour growth.
前列腺癌(PCa)是全球主要的健康问题。当前的诊断方法包括前列腺特异性抗原(PSA)血液检测、活检以及磁共振成像(MRI),以评估癌症的侵袭性并指导治疗决策。MRI与医学相契合,因为可以获取针对患者的图像生物标志物,有助于临床实践中数字孪生体的开发。这项工作提出了一个新颖的框架,通过整合临床MRI数据(如前列腺和肿瘤的几何形状、细胞的初始分布以及脉管系统)来创建个性化的PCa模型,从而获得整个前列腺的完整表示。在个性化模型构建之上,我们的方法通过有限元法模拟和预测前列腺中的肿瘤随时间的生长,将肿瘤生长动力学与氧气传输相结合,并纳入细胞增殖、分化和凋亡等过程。此外,我们的方法还包括PSA动力学的模拟,这使得能够通过患者的PSA水平评估肿瘤生长。为了获得模型参数,进行了多目标优化过程,以便同时为两名患者调整最佳参数。该框架通过来自四名患者的多次MRI随访数据进行了验证。诊断性MRI允许创建和初始化模型,而随后基于MRI的数据提供了额外信息以验证计算预测。该模型预测前列腺和肿瘤体积的增长以及血清PSA水平。这项工作是朝着为PCa患者创建数字孪生体迈出的初步步骤,为肿瘤生长提供了个性化见解。