Suppr超能文献

一种预测转录因子DNA结合偏好性的新型计算方法。

A novel computational approach to predict transcription factor DNA binding preference.

作者信息

Cai Yudong, He Jianfeng, Li Xinlei, Lu Lin, Yang Xinyi, Feng Kaiyan, Lu Wencong, Kong Xiangyin

机构信息

Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

出版信息

J Proteome Res. 2009 Feb;8(2):999-1003. doi: 10.1021/pr800717y.

Abstract

Transcription is one of the most important processes in cell in which transcription factors translate DNA sequences into RNA sequences. Accurate prediction of DNA binding preference of transcription factors is valuable for understanding the transcription regulatory mechanism and (1) elucidating regulation network. (2-4) Here we predict the DNA binding preference of transcription factor based on the protein amino acid composition and physicochemical properties, 0/1 encoding system of nucleotide, minimum Redundancy Maximum Relevance Feature Selection method, (5) and Nearest Neighbor Algorithm. The overall prediction accuracy of Jackknife cross-validation test is 91.1%, indicating that this approach is a useful tool to explore the relation between transcription factor and its binding sites. Moreover, we find that the secondary structure and polarizability of transcriptor contribute mostly in the prediction. Especially, a 7-nt motif with AT-rich region of the DNA binding sites discovered via our method is also consistent with the statistical analysis from the TRANSFAC database. (6).

摘要

转录是细胞中最重要的过程之一,在此过程中,转录因子将DNA序列转化为RNA序列。准确预测转录因子的DNA结合偏好对于理解转录调控机制和阐明调控网络具有重要价值。在此,我们基于蛋白质氨基酸组成和理化性质、核苷酸的0/1编码系统、最小冗余最大相关特征选择方法以及最近邻算法来预测转录因子的DNA结合偏好。留一法交叉验证测试的总体预测准确率为91.1%,表明该方法是探索转录因子与其结合位点之间关系的有用工具。此外,我们发现转录因子的二级结构和极化率在预测中贡献最大。特别是,通过我们的方法发现的DNA结合位点的一个富含AT区域的7核苷酸基序也与TRANSFAC数据库的统计分析结果一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验