Laboratoire Santé - Travail - Environnement, EA 3672, Université de Bordeaux, Victor Segalen Bordeaux 2,146 rue Léo-Saignat, 33 076 Bordeaux Cedex, France.
Part Fibre Toxicol. 2008 Dec 19;5:22. doi: 10.1186/1743-8977-5-22.
The ability of nanoparticles to cross the lung-blood barrier suggests that they may translocate to blood and to targets distant from their portal of entry. Nevertheless, nanotoxicity in organs has received little attention. The purpose of this study was to evaluate nanotoxicity in renal cells using in vitro models. Various carbon black (CB) (FW2-13 nm, Printex60-21 nm and LB101-95 nm) and titanium dioxide (TiO2-15 and TiO2-50 nm) nanoparticles were characterized on size by electron microscopy. We evaluated theirs effects on glomerular mesangial (IP15) and epithelial proximal tubular (LLC-PK1) renal cells, using light microscopy, WST-1 assay, immunofluorescence labeling and DCFH-DA for reactive oxygen species (ROS) assay.
Nanoparticles induced a variety of cell responses. On both IP15 and LLC-PK1 cells, the smallest FW2 NP was found to be the most cytotoxic with classic dose-behavior. For the other NPs tested, different cytotoxic profiles were found, with LLC-PK1 cells being more sensitive than IP15 cells. Exposure to FW2 NPs, evidenced in our experiments as the most cytotoxic particle type, significantly enhanced production of ROS in both IP15 and LLC-PK1 cells. Immunofluorescence microscopy using latex beads indicated that depending on their size, the cells internalized particles, which accumulated in the cell cytoplasm. Additionally using transmission electronic microscope micrographs show nanoparticles inside the cells and trapped in vesicles.
The present data constitute the first step towards determining in vitro dose effect of manufactured CB and TiO2 NPs in renal cells. Cytotoxicological assays using epithelial tubular and glomerular mesangial cell lines rapidly provide information and demonstrated that NP materials exhibit varying degrees of cytotoxicity. It seems clear that in vitro cellular systems will need to be further developed, standardized and validated (relative to in vivo effects) in order to provide useful screening data about the relative toxicity of nanoparticles.
纳米颗粒穿过肺-血屏障的能力表明它们可能转移到血液中,并转移到远离进入门户的靶标。然而,器官中的纳米毒性受到的关注很少。本研究的目的是使用体外模型评估肾细胞中的纳米毒性。通过电子显微镜对各种炭黑(CB)(FW2-13nm、Printex60-21nm 和 LB101-95nm)和二氧化钛(TiO2-15 和 TiO2-50nm)纳米颗粒进行了尺寸特征描述。我们使用光显微镜、WST-1 测定法、免疫荧光标记和 DCFH-DA 测定法来评估它们对肾小球系膜(IP15)和上皮近端肾小管(LLC-PK1)肾细胞的影响,以评估活性氧(ROS)。
纳米颗粒诱导了各种细胞反应。在 IP15 和 LLC-PK1 细胞上,发现最小的 FW2NP 是最具细胞毒性的,具有典型的剂量作用。对于测试的其他 NPs,发现了不同的细胞毒性谱,其中 LLC-PK1 细胞比 IP15 细胞更敏感。在我们的实验中,FW2 NPs 被证明是最具细胞毒性的颗粒类型,显著增强了两种细胞 IP15 和 LLC-PK1 中 ROS 的产生。使用乳胶珠进行免疫荧光显微镜检查表明,根据其大小,细胞内化了颗粒,这些颗粒在细胞质中积累。此外,使用透射电子显微镜照片显示了细胞内的纳米颗粒和被困在囊泡中的纳米颗粒。
本研究数据构成了确定制造 CB 和 TiO2NP 在肾细胞中体外剂量效应的第一步。使用上皮管状和肾小球系膜细胞系进行的细胞毒性测定法迅速提供了信息,并表明 NP 材料表现出不同程度的细胞毒性。很明显,为了提供有关纳米颗粒相对毒性的有用筛选数据,需要进一步开发、标准化和验证(相对于体内效应)体外细胞系统。