Suppr超能文献

差异地球移动者距离及其在视觉跟踪中的应用。

Differential earth mover's distance with its applications to visual tracking.

机构信息

School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2010 Feb;32(2):274-87. doi: 10.1109/TPAMI.2008.299.

Abstract

The Earth Mover's Distance (EMD) is a similarity measure that captures perceptual difference between two distributions. Its computational complexity, however, prevents a direct use in many applications. This paper proposes a novel Differential EMD (DEMD) algorithm based on the sensitivity analysis of the simplex method and offers a speedup at orders of magnitude compared with its brute-force counterparts. The DEMD algorithm is discussed and empirically verified in the visual tracking context. The deformations of the distributions for objects at different time instances are accommodated well by the EMD, and the differential algorithm makes the use of EMD in real-time tracking possible. To further reduce the computation, signatures, i.e., variable-size descriptions of distributions, are employed as an object representation. The new algorithm models and estimates local background scenes as well as foreground objects to handle scale changes in a principled way. Extensive quantitative evaluation of the proposed algorithm has been carried out using benchmark sequences and the improvement over the standard Mean Shift tracker is demonstrated.

摘要

大地移动距离 (EMD) 是一种度量两个分布之间感知差异的相似性度量。然而,其计算复杂度使得它无法直接用于许多应用。本文提出了一种新的基于单纯形法灵敏度分析的微分 EMD (DEMD) 算法,并与蛮力算法相比,实现了数量级的加速。本文在视觉跟踪背景下讨论并实证验证了 DEMD 算法。EMD 可以很好地适应不同时间实例的物体分布的变形,而微分算法则使得 EMD 在实时跟踪中成为可能。为了进一步减少计算量,采用特征(即分布的可变大小描述)作为物体表示。新算法以一种有原则的方式对局部背景场景和前景物体进行建模和估计,以处理尺度变化。本文使用基准序列对所提出的算法进行了广泛的定量评估,并证明了其优于标准 Mean Shift 跟踪器的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验