Suppr超能文献

Tr-Predictior:一种用于小样本云工作负载预测的集成迁移学习模型。

Tr-Predictior: An Ensemble Transfer Learning Model for Small-Sample Cloud Workload Prediction.

作者信息

Liu Chunhong, Jiao Jie, Li Weili, Wang Jingxiong, Zhang Junna

机构信息

College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China.

Engineering Lab of Intelligence Business, Xinxiang 453007, China.

出版信息

Entropy (Basel). 2022 Dec 3;24(12):1770. doi: 10.3390/e24121770.

Abstract

Accurate workload prediction plays a key role in intelligent scheduling decisions on cloud platforms. There are massive amounts of short-workload sequences in the cloud platform, and the small amount of data and the presence of outliers make accurate workload sequence prediction a challenge. For the above issues, this paper proposes an ensemble learning method based on sample weight transfer and long short-term memory (LSTM), termed as Tr-Predictor. Specifically, a selection method of similar sequences combining time warp edit distance (TWED) and transfer entropy (TE) is proposed to select a source domain dataset with higher similarity for the target workload sequence. Then, we upgrade the basic learner of the ensemble model two-stage TrAdaBoost.R2 to LSTM in the deep model and enhance the ability of the ensemble model to extract sequence features. To optimize the weight adjustment strategy, we adopt a two-stage weight adjustment strategy and select the best weight for the learner according to the sample error and model error. Finally, the above process determines the parameters of the target model and uses the target model to predict the short-task sequences. In the experimental validation, we arbitrarily select nine sets of short-workload data from the Google dataset and three sets of short-workload data from the Alibaba cluster to verify the prediction effectiveness of the proposed algorithm. The experimental results show that compared with the commonly used cloud workload prediction methods Tr-Predictor has higher prediction accuracy on the small-sample workload. The prediction indicators of the ablation experiments show the performance gain of each part in the proposed method.

摘要

准确的工作负载预测在云平台的智能调度决策中起着关键作用。云平台中存在大量短工作负载序列,少量的数据以及异常值的存在使得准确的工作负载序列预测成为一项挑战。针对上述问题,本文提出了一种基于样本权重转移和长短期记忆(LSTM)的集成学习方法,称为Tr-Predictor。具体而言,提出了一种结合时间规整编辑距离(TWED)和转移熵(TE)的相似序列选择方法,为目标工作负载序列选择相似度更高的源域数据集。然后,我们将集成模型两阶段TrAdaBoost.R2的基础学习器升级为深度模型中的LSTM,并增强集成模型提取序列特征的能力。为了优化权重调整策略我们采用两阶段权重调整策略,并根据样本误差和模型误差为学习器选择最佳权重。最后,上述过程确定目标模型的参数,并使用目标模型预测短任务序列实验验证中,我们从谷歌数据集中任意选择九组短工作负载数据,从阿里巴巴集群中选择三组短工作负载数据,以验证所提算法的预测有效性。实验结果表明,与常用的云工作负载预测方法相比Tr-Predictor在小样本工作负载上具有更高的预测准确率。消融实验的预测指标显示了所提方法中各部分的性能提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fee/9778472/6ebd8c5c9f67/entropy-24-01770-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验