Marsh Donald J, Toma Ildiko, Sosnovtseva Olga V, Peti-Peterdi Janos, Holstein-Rathlou Niels-Henrik
Dept. of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Box G-B3, Providence, RI 02912, USA.
Am J Physiol Renal Physiol. 2009 Apr;296(4):F751-61. doi: 10.1152/ajprenal.90669.2008. Epub 2008 Dec 30.
Tubuloglomerular feedback (TGF) and the myogenic mechanism control afferent arteriolar diameter in each nephron and regulate blood flow. Both mechanisms generate self-sustained oscillations, the oscillations interact, TGF modulates the frequency and amplitude of the myogenic oscillation, and the oscillations synchronize; a 5:1 frequency ratio is the most frequent. TGF oscillations synchronize in nephron pairs supplied from a common cortical radial artery, as do myogenic oscillations. We propose that electrotonic vascular signal propagation from one juxtaglomerular apparatus interacts with similar signals from other nephrons to produce synchronization. We tested this idea in tubular-vascular preparations from mice. Vascular smooth muscle cells were loaded with a fluorescent voltage-sensitive dye; fluorescence intensity was measured with confocal microscopy. Perfusion of the thick ascending limb activated TGF and depolarized afferent arteriolar smooth muscle cells. The depolarization spread to the cortical radial artery and other afferent arterioles and declined with distance from the perfused juxtaglomerular apparatus, consistent with electrotonic vascular signal propagation. With a mathematical model of two coupled nephrons, we estimated the conductance of nephron coupling by fitting simulated vessel diameters to experimental data. With this value, we simulated nephron pairs to test for synchronization. In single-nephron simulations, the frequency of the TGF oscillation varied with nephron length. Coupling nephrons of different lengths forced TGF frequencies of both pair members to converge to a common value. The myogenic oscillations also synchronized, and the synchronization between the TGF and the myogenic oscillations showed an increased stability against parameter perturbations. Electronic vascular signal propagation is a plausible mechanism for nephron synchronization. Coupling increased the stability of the various oscillations.
球管反馈(TGF)和肌源性机制控制着每个肾单位的入球小动脉直径并调节血流。这两种机制都会产生自持振荡,这些振荡相互作用,TGF调节肌源性振荡的频率和幅度,并且振荡会同步;5:1的频率比最为常见。TGF振荡在由共同的皮质放射状动脉供血的肾单位对中同步,肌源性振荡也是如此。我们提出,从一个球旁器进行的电紧张性血管信号传播与来自其他肾单位的类似信号相互作用以产生同步。我们在小鼠的肾小管 - 血管标本中测试了这一想法。血管平滑肌细胞加载了荧光电压敏感染料;用共聚焦显微镜测量荧光强度。厚升支的灌注激活了TGF并使入球小动脉平滑肌细胞去极化。去极化扩散到皮质放射状动脉和其他入球小动脉,并随着与灌注的球旁器距离的增加而衰减,这与电紧张性血管信号传播一致。利用两个耦合肾单位的数学模型,我们通过将模拟的血管直径拟合到实验数据来估计肾单位耦合的电导。利用这个值,我们模拟肾单位对来测试同步情况。在单肾单位模拟中,TGF振荡的频率随肾单位长度而变化。耦合不同长度的肾单位会使两个配对成员的TGF频率收敛到一个共同值。肌源性振荡也会同步,并且TGF和肌源性振荡之间的同步表现出对参数扰动的稳定性增加。电紧张性血管信号传播是肾单位同步的一种合理机制。耦合增加了各种振荡的稳定性。