Suppr超能文献

电紧张性血管信号传导与肾单位同步化。

Electrotonic vascular signal conduction and nephron synchronization.

作者信息

Marsh Donald J, Toma Ildiko, Sosnovtseva Olga V, Peti-Peterdi Janos, Holstein-Rathlou Niels-Henrik

机构信息

Dept. of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Box G-B3, Providence, RI 02912, USA.

出版信息

Am J Physiol Renal Physiol. 2009 Apr;296(4):F751-61. doi: 10.1152/ajprenal.90669.2008. Epub 2008 Dec 30.

Abstract

Tubuloglomerular feedback (TGF) and the myogenic mechanism control afferent arteriolar diameter in each nephron and regulate blood flow. Both mechanisms generate self-sustained oscillations, the oscillations interact, TGF modulates the frequency and amplitude of the myogenic oscillation, and the oscillations synchronize; a 5:1 frequency ratio is the most frequent. TGF oscillations synchronize in nephron pairs supplied from a common cortical radial artery, as do myogenic oscillations. We propose that electrotonic vascular signal propagation from one juxtaglomerular apparatus interacts with similar signals from other nephrons to produce synchronization. We tested this idea in tubular-vascular preparations from mice. Vascular smooth muscle cells were loaded with a fluorescent voltage-sensitive dye; fluorescence intensity was measured with confocal microscopy. Perfusion of the thick ascending limb activated TGF and depolarized afferent arteriolar smooth muscle cells. The depolarization spread to the cortical radial artery and other afferent arterioles and declined with distance from the perfused juxtaglomerular apparatus, consistent with electrotonic vascular signal propagation. With a mathematical model of two coupled nephrons, we estimated the conductance of nephron coupling by fitting simulated vessel diameters to experimental data. With this value, we simulated nephron pairs to test for synchronization. In single-nephron simulations, the frequency of the TGF oscillation varied with nephron length. Coupling nephrons of different lengths forced TGF frequencies of both pair members to converge to a common value. The myogenic oscillations also synchronized, and the synchronization between the TGF and the myogenic oscillations showed an increased stability against parameter perturbations. Electronic vascular signal propagation is a plausible mechanism for nephron synchronization. Coupling increased the stability of the various oscillations.

摘要

球管反馈(TGF)和肌源性机制控制着每个肾单位的入球小动脉直径并调节血流。这两种机制都会产生自持振荡,这些振荡相互作用,TGF调节肌源性振荡的频率和幅度,并且振荡会同步;5:1的频率比最为常见。TGF振荡在由共同的皮质放射状动脉供血的肾单位对中同步,肌源性振荡也是如此。我们提出,从一个球旁器进行的电紧张性血管信号传播与来自其他肾单位的类似信号相互作用以产生同步。我们在小鼠的肾小管 - 血管标本中测试了这一想法。血管平滑肌细胞加载了荧光电压敏感染料;用共聚焦显微镜测量荧光强度。厚升支的灌注激活了TGF并使入球小动脉平滑肌细胞去极化。去极化扩散到皮质放射状动脉和其他入球小动脉,并随着与灌注的球旁器距离的增加而衰减,这与电紧张性血管信号传播一致。利用两个耦合肾单位的数学模型,我们通过将模拟的血管直径拟合到实验数据来估计肾单位耦合的电导。利用这个值,我们模拟肾单位对来测试同步情况。在单肾单位模拟中,TGF振荡的频率随肾单位长度而变化。耦合不同长度的肾单位会使两个配对成员的TGF频率收敛到一个共同值。肌源性振荡也会同步,并且TGF和肌源性振荡之间的同步表现出对参数扰动的稳定性增加。电紧张性血管信号传播是肾单位同步的一种合理机制。耦合增加了各种振荡的稳定性。

相似文献

1
Electrotonic vascular signal conduction and nephron synchronization.
Am J Physiol Renal Physiol. 2009 Apr;296(4):F751-61. doi: 10.1152/ajprenal.90669.2008. Epub 2008 Dec 30.
2
Multinephron dynamics on the renal vascular network.
Am J Physiol Renal Physiol. 2013 Jan 1;304(1):F88-F102. doi: 10.1152/ajprenal.00237.2012. Epub 2012 Sep 12.
3
The nephron-arterial network and its interactions.
Am J Physiol Renal Physiol. 2019 May 1;316(5):F769-F784. doi: 10.1152/ajprenal.00484.2018. Epub 2019 Feb 13.
4
Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats.
Am J Physiol Renal Physiol. 2007 Nov;293(5):F1545-55. doi: 10.1152/ajprenal.00054.2007. Epub 2007 Aug 29.
5
Interacting information streams on the nephron arterial network.
Front Netw Physiol. 2023 Oct 19;3:1254964. doi: 10.3389/fnetp.2023.1254964. eCollection 2023.
6
Coupling-induced complexity in nephron models of renal blood flow regulation.
Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R997-R1006. doi: 10.1152/ajpregu.00714.2009. Epub 2010 Feb 10.
7
Autoregulation of afferent arteriolar blood flow in juxtamedullary nephrons.
Am J Physiol. 1994 Nov;267(5 Pt 2):F879-87. doi: 10.1152/ajprenal.1994.267.5.F879.
9
Conduction of feedback-mediated signal in a computational model of coupled nephrons.
Math Med Biol. 2016 Mar;33(1):87-106. doi: 10.1093/imammb/dqv005. Epub 2015 Mar 19.
10
Effect of epithelial sodium channel blockade on the myogenic response of rat juxtamedullary afferent arterioles.
Hypertension. 2009 Nov;54(5):1062-9. doi: 10.1161/HYPERTENSIONAHA.109.137992. Epub 2009 Aug 31.

引用本文的文献

2
Resting-state MRI reveals spontaneous physiological fluctuations in the kidney and tracks diabetic nephropathy in rats.
Am J Physiol Renal Physiol. 2024 Jul 1;327(1):F113-F127. doi: 10.1152/ajprenal.00423.2023. Epub 2024 Apr 25.
4
Interacting information streams on the nephron arterial network.
Front Netw Physiol. 2023 Oct 19;3:1254964. doi: 10.3389/fnetp.2023.1254964. eCollection 2023.
5
The conducted vasomotor response and the principles of electrical communication in resistance arteries.
Physiol Rev. 2024 Jan 1;104(1):33-84. doi: 10.1152/physrev.00035.2022. Epub 2023 Jul 6.
6
Ion channels and channelopathies in glomeruli.
Physiol Rev. 2023 Jan 1;103(1):787-854. doi: 10.1152/physrev.00013.2022. Epub 2022 Aug 25.
8
Microvascular dysfunction and kidney disease: Challenges and opportunities?
Microcirculation. 2021 Apr;28(3):e12661. doi: 10.1111/micc.12661. Epub 2020 Oct 28.
9
Lack of Connexins 40 and 45 Reduces Local and Conducted Vasoconstrictor Responses in the Murine Afferent Arterioles.
Front Physiol. 2020 Aug 7;11:961. doi: 10.3389/fphys.2020.00961. eCollection 2020.
10
Architecture of the rat nephron-arterial network: analysis with micro-computed tomography.
Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F351-F360. doi: 10.1152/ajprenal.00092.2017. Epub 2017 Apr 19.

本文引用的文献

1
Oscillating cortical thick ascending limb cells at the juxtaglomerular apparatus.
J Am Soc Nephrol. 2008 Oct;19(10):1940-6. doi: 10.1681/ASN.2007080900. Epub 2008 Jun 18.
2
Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats.
Am J Physiol Renal Physiol. 2007 Nov;293(5):F1545-55. doi: 10.1152/ajprenal.00054.2007. Epub 2007 Aug 29.
4
Calcium wave of tubuloglomerular feedback.
Am J Physiol Renal Physiol. 2006 Aug;291(2):F473-80. doi: 10.1152/ajprenal.00425.2005. Epub 2006 Feb 21.
5
Network oscillations: emerging computational principles.
J Neurosci. 2006 Feb 8;26(6):1673-6. doi: 10.1523/JNEUROSCI.3737-05d.2006.
6
Structural morphology of renal vasculature.
Am J Physiol Heart Circ Physiol. 2006 Jul;291(1):H296-309. doi: 10.1152/ajpheart.00814.2005. Epub 2006 Jan 6.
7
Interactions between TGF-dependent and myogenic oscillations in tubular pressure and whole kidney blood flow in both SDR and SHR.
Am J Physiol Renal Physiol. 2006 Mar;290(3):F720-32. doi: 10.1152/ajprenal.00205.2005. Epub 2005 Oct 11.
8
Defining electrical communication in skeletal muscle resistance arteries: a computational approach.
J Physiol. 2005 Oct 1;568(Pt 1):267-81. doi: 10.1113/jphysiol.2005.090233. Epub 2005 Jul 7.
9
Nonlinear interactions in renal blood flow regulation.
Am J Physiol Regul Integr Comp Physiol. 2005 May;288(5):R1143-59. doi: 10.1152/ajpregu.00539.2004. Epub 2005 Jan 27.
10
Frequency encoding in renal blood flow regulation.
Am J Physiol Regul Integr Comp Physiol. 2005 May;288(5):R1160-7. doi: 10.1152/ajpregu.00540.2004. Epub 2005 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验