Suppr超能文献

耦合肾单位计算模型中反馈介导信号的传导

Conduction of feedback-mediated signal in a computational model of coupled nephrons.

作者信息

Sgouralis Ioannis, Layton Anita T

机构信息

National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA

Department of Mathematics, Duke University, Durham, NC, USA.

出版信息

Math Med Biol. 2016 Mar;33(1):87-106. doi: 10.1093/imammb/dqv005. Epub 2015 Mar 19.

Abstract

The nephron in the kidney regulates its fluid flow by several autoregulatory mechanisms. Two primary mechanisms are the myogenic response and the tubuloglomerular feedback (TGF). The myogenic response is a property of the pre-glomerular vasculature in which a rise in intravascular pressure elicits vasoconstriction that generates a compensatory increase in vascular resistance. TGF is a negative feedback response that balances glomerular filtration with tubular reabsorptive capacity. While each nephron has its own autoregulatory response, the responses of the kidney's many nephrons do not act autonomously but are instead coupled through the pre-glomerular vasculature. To better understand the conduction of these signals along the pre-glomerular arterioles and the impacts of internephron coupling on nephron flow dynamics, we developed a mathematical model of renal haemodynamics of two neighbouring nephrons that are coupled in that their afferent arterioles arise from a common cortical radial artery. Simulations were conducted to estimate internephron coupling strength, determine its dependence on vascular properties and to investigate the effect of coupling on TGF-mediated flow oscillations. Simulation results suggest that reduced gap-junctional conductances may yield stronger internephron TGF coupling and highly irregular TGF-mediated oscillations in nephron dynamics, both of which experimentally have been associated with hypertensive rats.

摘要

肾脏中的肾单位通过多种自身调节机制来调节其液体流动。两种主要机制是肌源性反应和肾小管-肾小球反馈(TGF)。肌源性反应是肾小球前血管系统的一种特性,其中血管内压力升高会引发血管收缩,从而导致血管阻力产生代偿性增加。TGF是一种负反馈反应,可使肾小球滤过与肾小管重吸收能力保持平衡。虽然每个肾单位都有其自身的自身调节反应,但肾脏中众多肾单位的反应并非独立起作用,而是通过肾小球前血管系统相互耦合。为了更好地理解这些信号沿肾小球前小动脉的传导以及肾单位间耦合对肾单位血流动力学的影响,我们建立了两个相邻肾单位肾血流动力学的数学模型,这两个肾单位相互耦合,因为它们的入球小动脉起源于同一条皮质放射状动脉。通过模拟来估计肾单位间耦合强度,确定其对血管特性的依赖性,并研究耦合对TGF介导的血流振荡的影响。模拟结果表明,间隙连接电导降低可能会产生更强的肾单位间TGF耦合以及肾单位动力学中高度不规则的TGF介导振荡,这两者在实验上都与高血压大鼠有关。

相似文献

1
Conduction of feedback-mediated signal in a computational model of coupled nephrons.
Math Med Biol. 2016 Mar;33(1):87-106. doi: 10.1093/imammb/dqv005. Epub 2015 Mar 19.
2
A multinephron model of renal blood flow autoregulation by tubuloglomerular feedback and myogenic response.
Acta Physiol Scand. 1991 Sep;143(1):71-92. doi: 10.1111/j.1748-1716.1991.tb09203.x.
3
Feedback-mediated dynamics in a model of coupled nephrons with compliant thick ascending limbs.
Math Biosci. 2011 Apr;230(2):115-27. doi: 10.1016/j.mbs.2011.02.004. Epub 2011 Feb 15.
4
Coupling-induced complexity in nephron models of renal blood flow regulation.
Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R997-R1006. doi: 10.1152/ajpregu.00714.2009. Epub 2010 Feb 10.
5
Electrotonic vascular signal conduction and nephron synchronization.
Am J Physiol Renal Physiol. 2009 Apr;296(4):F751-61. doi: 10.1152/ajprenal.90669.2008. Epub 2008 Dec 30.
6
Multinephron dynamics on the renal vascular network.
Am J Physiol Renal Physiol. 2013 Jan 1;304(1):F88-F102. doi: 10.1152/ajprenal.00237.2012. Epub 2012 Sep 12.
7
TGF-mediated dynamics in a system of many coupled nephrons.
Bull Math Biol. 2009 Aug;71(6):1482-506. doi: 10.1007/s11538-009-9410-1. Epub 2009 Mar 5.
8
Chaos and non-linear phenomena in renal vascular control.
Cardiovasc Res. 1996 Mar;31(3):359-70.
9
Interacting information streams on the nephron arterial network.
Front Netw Physiol. 2023 Oct 19;3:1254964. doi: 10.3389/fnetp.2023.1254964. eCollection 2023.
10
Nephron blood flow dynamics measured by laser speckle contrast imaging.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F319-29. doi: 10.1152/ajprenal.00417.2010. Epub 2010 Nov 3.

引用本文的文献

1
Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat.
Math Med Biol. 2017 Sep 1;34(3):313-333. doi: 10.1093/imammb/dqw010.
2
Transfer Function Analysis of Dynamic Blood Flow Control in the Rat Kidney.
Bull Math Biol. 2016 May;78(5):923-60. doi: 10.1007/s11538-016-0168-y. Epub 2016 May 12.

本文引用的文献

1
Less is more: minimal expression of myoendothelial gap junctions optimizes cell-cell communication in virtual arterioles.
J Physiol. 2014 Aug 1;592(15):3243-55. doi: 10.1113/jphysiol.2014.272815. Epub 2014 Jun 6.
2
Theoretical assessment of renal autoregulatory mechanisms.
Am J Physiol Renal Physiol. 2014 Jun 1;306(11):F1357-71. doi: 10.1152/ajprenal.00649.2013. Epub 2014 Mar 12.
3
Control and modulation of fluid flow in the rat kidney.
Bull Math Biol. 2013 Dec;75(12):2551-74. doi: 10.1007/s11538-013-9907-5. Epub 2013 Oct 9.
4
Tubular fluid flow and distal NaCl delivery mediated by tubuloglomerular feedback in the rat kidney.
J Math Biol. 2014 Mar;68(4):1023-49. doi: 10.1007/s00285-013-0667-5. Epub 2013 Mar 26.
5
Multinephron dynamics on the renal vascular network.
Am J Physiol Renal Physiol. 2013 Jan 1;304(1):F88-F102. doi: 10.1152/ajprenal.00237.2012. Epub 2012 Sep 12.
7
Autoregulation and conduction of vasomotor responses in a mathematical model of the rat afferent arteriole.
Am J Physiol Renal Physiol. 2012 Jul 15;303(2):F229-39. doi: 10.1152/ajprenal.00589.2011. Epub 2012 Apr 11.
8
Myoendothelial contacts, gap junctions, and microdomains: anatomical links to function?
Microcirculation. 2012 Jul;19(5):403-15. doi: 10.1111/j.1549-8719.2011.00146.x.
9
Feedback-mediated dynamics in a model of coupled nephrons with compliant thick ascending limbs.
Math Biosci. 2011 Apr;230(2):115-27. doi: 10.1016/j.mbs.2011.02.004. Epub 2011 Feb 15.
10
A mathematical model of the myogenic response to systolic pressure in the afferent arteriole.
Am J Physiol Renal Physiol. 2011 Mar;300(3):F669-81. doi: 10.1152/ajprenal.00382.2010. Epub 2010 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验