Bétous Rémy, Rey Laurie, Wang Guliang, Pillaire Marie-Jeanne, Puget Nadine, Selves Janick, Biard Denis S F, Shin-ya Kazuo, Vasquez Karen M, Cazaux Christophe, Hoffmann Jean-Sébastien
CNRS, Institute of Pharmacology and Structural Biology (IPBS), Toulouse, France.
Mol Carcinog. 2009 Apr;48(4):369-78. doi: 10.1002/mc.20509.
Accurate DNA replication during S-phase is fundamental to maintain genome integrity. During this critical process, replication forks frequently encounter obstacles that impede their progression. While the regulatory pathways which act in response to exogenous replication stress are beginning to emerge, the mechanisms by which fork integrity is maintained at naturally occurring endogenous replication-impeding sequences remains obscure. Notably, little is known about how cells replicate through special chromosomal regions containing structured non-B DNA, for example, G4 quartets, known to hamper fork progression or trigger chromosomal rearrangements. Here, we have investigated the role in this process of the human translesion synthesis (TLS) DNA polymerases of the Y-family (pol eta, pol iota, and pol kappa), specialized enzymes known to synthesize DNA through DNA damage. We show that depletion by RNA interference of expression of the genes for Pol eta or Pol kappa, but not Pol iota, sensitizes U2OS cells treated with the G4-tetraplex interactive compound telomestatin and triggers double-strand breaks in HeLa cells harboring multiple copies of a G-rich sequence from the promoter region of the human c-MYC gene, chromosomally integrated as a transgene. Moreover, we found that downregulation of Pol kappa only raises the level of DSB in HeLa cells containing either one of two breakage hotspot structured DNA sequences in the chromosome, the major break region (Mbr) of BCL-2 gene and the GA rich region from the far right-hand end of the genome of the Kaposi Sarcoma associated Herpesvirus. These data suggest that naturally occurring DNA structures are physiological substrates of both pol eta and pol kappa. We discuss these data in the light of their downregulation in human cancers.
S期准确的DNA复制对于维持基因组完整性至关重要。在这个关键过程中,复制叉经常遇到阻碍其前进的障碍。虽然应对外源性复制应激的调控途径已开始显现,但在天然存在的内源性复制阻碍序列处维持叉完整性的机制仍不清楚。值得注意的是,关于细胞如何通过含有结构化非B DNA的特殊染色体区域进行复制知之甚少,例如,已知会阻碍叉前进或引发染色体重排的G4四联体。在这里,我们研究了Y家族的人类跨损伤合成(TLS)DNA聚合酶(pol eta、pol iota和pol kappa)在这一过程中的作用,这些特殊酶已知可通过DNA损伤合成DNA。我们发现,通过RNA干扰使Pol eta或Pol kappa基因的表达缺失,但不包括Pol iota,会使经G4-四链体相互作用化合物端粒抑素处理的U2OS细胞敏感,并在含有来自人类c-MYC基因启动子区域的富含G序列多拷贝的HeLa细胞中引发双链断裂,该序列作为转基因染色体整合。此外,我们发现Pol kappa的下调仅在含有染色体中两个断裂热点结构化DNA序列之一的HeLa细胞中提高了DSB水平,这两个序列分别是BCL-2基因的主要断裂区域(Mbr)和卡波西肉瘤相关疱疹病毒基因组最右端的富含GA区域。这些数据表明,天然存在的DNA结构是pol eta和pol kappa的生理底物。我们根据它们在人类癌症中的下调情况讨论了这些数据。