Nagahori Noriko, Abe Midori, Nishimura Shin-Ichiro
Laboratory for Advanced Chemical Biology, Graduate School of Advanced Life Science, and Frontier Research Center for the Post-Genome Science and Technology, Hokkaido University, N21, W11, Sapporo 001-0021, Japan.
Biochemistry. 2009 Jan 27;48(3):583-94. doi: 10.1021/bi801640n.
Glycosphingolipids (GSLs) synthesized in Golgi apparatus by sequential transfer of sugar residues to a ceramide lipid anchor are ubiquitously distributing on vertebrate plasma membranes. A standardized method allowing for high-throughput structural profiling and functional characterization of living cell surface GSLs is of growing importance because they function as crucial signal transduction molecules in various processes of dynamic cellular recognitions. However, methods are not available for amplification of GSLs, while the genomic scale PCR amplification permits large-scale mammalian proteomic analysis. Here we communicate such an approach to a novel "omics", namely, glycosphingolipidomics based on the "glycoblotting" method. The method, which involves selective ozonolysis of the C-C double bond in the ceramide moiety and subsequent enrichment of generated GSL aldehydes by chemical ligation using an aminooxy-functionalized gold nanoparticle (aoGNP) should be of widespread utility for identifying and characterizing whole GSLs present in the living cell surfaces. The present protocol using glycoblotting permitted MALDI-TOFMS-based high-throughput structural profiling of mouse brain gangliosides such as GM1, GD1a/GD1b, and GT1b for adult or GD3 in the case for the embryonic mouse. When mouse melanoma B16 cells were subjected to this protocol, it was demonstrated that gangliosides enriched from the plasma membranes are the only GM3 bearing microheteogeneity in the structure of the N-acyl chain. Surface plasmon resonance analysis revealed that aoGNP displaying whole GSLs blotted from mouse B16 melanoma cell surfaces can be used directly for monitoring the specific interaction with the self-assembled monolayer (SAM) of Gg3Cer (gangliotriaosylceramide). Our results indicate that GSL-selective enrichment onto aoGNP from living cell surfaces allows for rapid reconstruction of plasma membrane models mimicking the intact GSL microdomain feasible for further structural and functional characterization.
糖鞘脂(GSLs)在高尔基体中通过将糖残基依次转移至神经酰胺脂质锚定物上而合成,广泛分布于脊椎动物的质膜上。一种能够对活细胞表面GSLs进行高通量结构分析和功能表征的标准化方法变得越来越重要,因为它们在动态细胞识别的各种过程中作为关键的信号转导分子发挥作用。然而,目前尚无GSLs的扩增方法,而基因组规模的PCR扩增可用于大规模的哺乳动物蛋白质组分析。在此,我们介绍一种基于“糖印迹”方法的新型“组学”方法,即糖鞘脂组学。该方法包括对神经酰胺部分的碳 - 碳双键进行选择性臭氧分解,随后使用氨基氧基功能化金纳米颗粒(aoGNP)通过化学连接富集生成的GSL醛,对于识别和表征活细胞表面存在的完整GSLs应具有广泛的用途。使用糖印迹的本方案允许基于基质辅助激光解吸电离飞行时间质谱(MALDI - TOFMS)对成年小鼠脑的神经节苷脂如GM1、GD1a/GD1b和GT1b进行高通量结构分析,对于胚胎小鼠则可分析GD3。当小鼠黑色素瘤B16细胞采用该方案时,结果表明从质膜富集的神经节苷脂是唯一在N - 酰基链结构上具有微异质性的GM3。表面等离子体共振分析表明,展示从小鼠B16黑色素瘤细胞表面印迹的完整GSLs的aoGNP可直接用于监测与Gg3Cer(神经节三糖神经酰胺)自组装单层(SAM)的特异性相互作用。我们的结果表明,从活细胞表面将GSLs选择性富集到aoGNP上能够快速重建模拟完整GSL微区的质膜模型,这对于进一步的结构和功能表征是可行的。