Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA.
Plant Cell. 2012 Feb;24(2):692-707. doi: 10.1105/tpc.111.093146. Epub 2012 Feb 21.
Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H(2) production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H(2) production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.
莱茵衣藻是一种单细胞绿藻,常经历缺氧/无氧的土壤条件,激活发酵代谢。我们分离到三个丙酮酸甲酸裂解酶(PFL1)基因敲除的莱茵衣藻突变体;编码的 PFL1 蛋白在野生型莱茵衣藻细胞中催化主要的发酵途径。当 pfl1 突变体处于黑暗发酵条件下时,它们显示出丙酮酸向乳酸的通量增加,丙酮酸脱羧作用升高,乙醇积累,丙酮酸铁氧还蛋白氧化还原酶的丙酮酸氧化降低,以及 H2 生成减少。pfl1-1 突变体还积累了高浓度的乳酸、琥珀酸、丙氨酸、苹果酸和富马酸。为了进一步研究该系统,我们生成了一个不能合成甲酸和乙醇的双突变体(pfl1-1 adh1)。与 pfl1 突变体一样,该菌株分泌乳酸,但也表现出细胞外甘油、乙酸和细胞内还原糖的水平显著增加,以及黑暗、发酵性 H2 生成减少。虽然野生型莱茵衣藻发酵主要产生甲酸和乙醇,但双突变体将糖酵解碳重新定向为乳酸和甘油。尽管突变体中观察到的代谢调整有助于 NADH 再氧化和在黑暗、缺氧条件下持续进行糖酵解,但考虑到我们目前对发酵代谢调节的了解,这些观察到的变化是无法预测的。