Kopp Eva Katharina, Dekant Wolfgang
Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
Toxicol Appl Pharmacol. 2009 Mar 1;235(2):135-42. doi: 10.1016/j.taap.2008.12.001. Epub 2008 Dec 11.
The rodent carcinogen acrylamide (AA) is formed during preparation of starch-containing foods. AA is partly metabolized to the genotoxic epoxide glycidamide (GA). After metabolic processing, the mercapturic acids N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA), rac-N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA) and rac-N-acetyl-S-(1-carbamoyl-moyl-2-hydroxyethyl)-L-cysteine (iso-GAMA) are excreted with urine. In humans, AAMA can be sulfoxidized to AAMA-sulfoxide. The aim of this study was to assess potential species-differences in AA-toxicokinetics in rats and humans after single oral administration of doses similar to the daily human dietary exposure. Male Fischer 344 rats (n=5/dose group) were administered 20 and 100 microg/kg b.w. (13)C(3)-AA in deionized water via oral gavage. Human subjects (n=3/gender) were orally administered 0.5 and 20 microg/kg b.w. (13)C(3)-AA with drinking water. Urine samples were collected in intervals for 96 and 94 h, respectively. Urinary concentrations of (13)C(3)-AAMA, (13)C(3)-GAMA and (13)C(3)-AAMA-sulfoxide were monitored by liquid chromatography-tandem mass spectrometry. The recovered urinary metabolites accounted for 66.3% and 70.5% of the 20 and 100 microg/kg b.w. doses in rats and for 71.3% and 70.0% of the 0.5 and 20 microg/kg b.w. doses in humans. In rats, (13)C(3)-AAMA accounted for 33.6% and 38.8% of dose and 32.7% and 31.7% of dose was recovered as (13)C(3)-GAMA; (13)C(3)-AAMA-sulfoxide was not detected in rat urine. In humans, (13)C(3)-AAMA, (13)C(3)-GAMA and (13)C(3)-AAMA-sulfoxide accounted for 51.7% and 49.2%, 6.3% and 6.4% and 13.2% and 14.5% of the applied dose, respectively. The obtained results suggest that the extent of AA bioactivation to GA in humans is lower than in rodents.
啮齿动物致癌物丙烯酰胺(AA)在含淀粉食物的制备过程中形成。AA部分代谢为具有基因毒性的环氧化物缩水甘油酰胺(GA)。经过代谢处理后,硫醚氨酸N - 乙酰 - S -(2 - 氨甲酰基乙基)- L - 半胱氨酸(AAMA)、消旋N - 乙酰 - S -(2 - 氨甲酰基 - 2 - 羟乙基)- L - 半胱氨酸(GAMA)和消旋N - 乙酰 - S -(1 - 氨甲酰基 - 2 - 羟乙基)- L - 半胱氨酸(异 - GAMA)随尿液排出。在人类中,AAMA可被氧化为AAMA - 亚砜。本研究的目的是评估单次口服给予与人类日常饮食暴露量相似的剂量后,大鼠和人类在AA毒代动力学方面的潜在种属差异。雄性Fischer 344大鼠(每组n = 5)经口灌胃给予20和100μg/kg体重的(13)C(3)- AA,溶剂为去离子水。人类受试者(每组n = 3/性别)经口给予0.5和20μg/kg体重的(13)C(3)- AA,溶剂为饮用水。分别在96小时和94小时内间隔采集尿液样本。通过液相色谱 - 串联质谱法监测尿液中(13)C(3)- AAMA、(13)C(3)- GAMA和(13)C(3)- AAMA - 亚砜的浓度。回收的尿液代谢物在大鼠中分别占20和100μg/kg体重剂量的66.3%和70.5%,在人类中分别占0.5和20μg/kg体重剂量的71.3%和70.0%。在大鼠中,(13)C(3)- AAMA分别占剂量的33.6%和38.8%,32.7%和31.7%的剂量以(之)(13)C(3)- GAMA形式回收;在大鼠尿液中未检测到(13)C(3)- AAMA - 亚砜。在人类中,(13)C(3)- AAMA、(13)C(3)- GAMA和(13)C(3)- AAMA - 亚砜分别占给药剂量的51.7%和49.2%、6.3%和6.4%以及13.2%和14.5%。所得结果表明,人类中AA生物活化生成GA的程度低于啮齿动物。