Tang D I, Geller N L, Pocock S J
Statistical Science and Epidemiology Division, Nathan Kline Institute, Orangeburg, New York 10962.
Biometrics. 1993 Mar;49(1):23-30.
This paper considers some methods for reducing the number of significance tests undertaken when analyzing and reporting results of clinical trials. Emphasis is placed on designing and analyzing clinical trials to examine a composite hypothesis concerning multiple endpoints and combining this multiple endpoint methodology with group sequential methodology. Four methods for composite hypotheses are considered: an ordinary least squares and a generalized least squares approach both due to O'Brien (1984, Biometrics 40, 1079-1087), a new modification of these, and an approximate likelihood ratio test, due to Tang, Gnecco, and Geller (1989, Biometrika 76, 577-583). These are extended for group sequential use. In particular, simulation is used to generate critical values and sequences of nominal significance levels for the approximate likelihood ratio test, which is not normally distributed. An example is given and the relative merits of the suggested approaches are discussed.
本文探讨了一些在分析和报告临床试验结果时减少显著性检验次数的方法。重点在于设计和分析临床试验,以检验关于多个终点的复合假设,并将这种多终点方法与成组序贯方法相结合。文中考虑了四种用于复合假设的方法:一种是由奥布赖恩(1984年,《生物统计学》40卷,第1079 - 1087页)提出的普通最小二乘法和广义最小二乘法,一种是对这些方法的新改进,以及一种由唐、涅科和盖勒(1989年,《生物计量学杂志》76卷,第577 - 583页)提出的近似似然比检验。这些方法被扩展用于成组序贯分析。特别地,通过模拟为近似似然比检验生成临界值和名义显著性水平序列,该检验通常不服从正态分布。文中给出了一个示例,并讨论了所建议方法的相对优点。