Molitoris Bruce A, Sandoval Ruben M
Department of Medicine, Indiana University School of Medicine, Indianapolis, 46202, USA.
Pflugers Arch. 2009 May;458(1):203-9. doi: 10.1007/s00424-008-0629-8. Epub 2009 Jan 15.
Recent advances in optics, computer sciences, fluorophores, and molecular techniques allow investigators the opportunity to study dynamic events within the functioning kidney with subcellular resolution. Investigators can now use two-photon microscopy to follow several complex heterogenous processes in organs such as the kidney with high spacial and temporal resolution. Repeat determinations over time within the same animal are possible and minimize animal use and interanimal variability. Furthermore, the ability to obtain volumetric data (3D) makes quantitative 4D (time) analysis possible. Finally, use of multiple fluorophores concurrently allows for three different or interactive processes to be observed simultaneously. Therefore, this approach compliments existing molecular, biochemical, and pharmacologic techniques by advancing in vivo data analysis and interpretation to subcellular levels for molecules without the requirement for fixation. Its use in the kidney is in its infancy but offers much promise for unraveling the complex interdependent physiologic and pathophysiologic processes known to contribute to cell function and disease.
光学、计算机科学、荧光团和分子技术的最新进展使研究人员有机会以亚细胞分辨率研究功能正常的肾脏内的动态事件。研究人员现在可以使用双光子显微镜,以高空间和时间分辨率追踪肾脏等器官中的几个复杂异质过程。可以在同一动物体内随时间进行重复测定,从而尽量减少动物的使用和动物间的变异性。此外,获取体积数据(3D)的能力使定量4D(时间)分析成为可能。最后,同时使用多种荧光团可以同时观察三个不同的或相互作用的过程。因此,这种方法通过将体内数据分析和解释推进到分子的亚细胞水平,而无需固定,从而补充了现有的分子、生化和药理学技术。它在肾脏中的应用尚处于起步阶段,但为揭示已知的导致细胞功能和疾病的复杂相互依存的生理和病理生理过程提供了很大的希望。