Suppr超能文献

机械心脏瓣膜铰链区域血流与血小板动力学的二维模拟

Two-dimensional simulation of flow and platelet dynamics in the hinge region of a mechanical heart valve.

作者信息

Govindarajan V, Udaykumar H S, Chandran K B

机构信息

Department of Biomedical Engineering, College of Engineering, The University of lowa, 1402 SC, lowa City, IA 52242, USA.

出版信息

J Biomech Eng. 2009 Mar;131(3):031002. doi: 10.1115/1.3005158.

Abstract

The hinge region of a mechanical bileaflet valve is implicated in blood damage and initiation of thrombus formation. Detailed fluid dynamic analysis in the complex geometry of the hinge region during the closing phase of the bileaflet valve is the focus of this study to understand the effect of fluid-induced stresses on the activation of platelets. A fixed-grid Cartesian mesh flow solver is used to simulate the blood flow through a two-dimensional geometry of the hinge region of a bileaflet mechanical valve. Use of local mesh refinement algorithm provides mesh adaptation based on the gradients of flow in the constricted geometry of the hinge. Leaflet motion is specified from the fluid-structure interaction analysis of the leaflet dynamics during the closing phase from a previous study, which focused on the fluid mechanics at the gap between the leaflet edges and the valve housing. A Lagrangian particle tracking method is used to model and track the platelets and to compute the magnitude of the shear stress on the platelets as they pass through the hinge region. Results show that there is a boundary layer separation in the gaps between the leaflet ear and the constricted hinge geometry. Separated shear layers roll up into vortical structures that lead to high residence times combined with exposure to high-shear stresses for particles in the hinge region. Particles are preferentially entrained into this recirculation zone, presenting the possibility of platelet activation, aggregation, and initiation of thrombi.

摘要

机械双叶瓣瓣膜的铰链区域与血液损伤和血栓形成的起始有关。本研究的重点是在双叶瓣瓣膜关闭阶段,对铰链区域复杂几何形状进行详细的流体动力学分析,以了解流体诱导应力对血小板激活的影响。使用固定网格笛卡尔网格流动求解器来模拟血液流过双叶机械瓣膜铰链区域的二维几何形状。局部网格细化算法的使用基于铰链狭窄几何形状中流动的梯度提供网格适配。瓣叶运动是根据先前一项研究中瓣叶动力学在关闭阶段的流固耦合分析确定的,该研究重点关注瓣叶边缘与瓣膜外壳之间间隙处的流体力学。采用拉格朗日粒子跟踪方法对血小板进行建模和跟踪,并计算血小板通过铰链区域时作用在其上的剪应力大小。结果表明,在瓣叶耳部与狭窄的铰链几何形状之间的间隙中存在边界层分离。分离的剪切层卷绕成涡旋结构,导致驻留时间延长,同时铰链区域内的颗粒会受到高剪应力作用。颗粒优先被卷入这个再循环区域,这表明存在血小板激活、聚集和血栓形成起始的可能性。

相似文献

2
Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure.
Ann Biomed Eng. 2006 Oct;34(10):1519-34. doi: 10.1007/s10439-006-9194-5. Epub 2006 Sep 30.
8
Spatio-temporal flow analysis in bileaflet heart valve hinge regions: potential analysis for blood element damage.
Ann Biomed Eng. 2007 Aug;35(8):1333-46. doi: 10.1007/s10439-007-9302-1. Epub 2007 Apr 13.
10
A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase.
Ann Biomed Eng. 2012 Jul;40(7):1468-85. doi: 10.1007/s10439-011-0502-3. Epub 2012 Jan 4.

引用本文的文献

1
Simulation of Mechanical Heart Valve Dysfunction and the Non-Newtonian Blood Model Approach.
Appl Bionics Biomech. 2022 Apr 19;2022:9612296. doi: 10.1155/2022/9612296. eCollection 2022.
2
Platelet dynamics in three-dimensional simulation of whole blood.
Biophys J. 2014 Jun 3;106(11):2529-40. doi: 10.1016/j.bpj.2014.04.028.
3
Purely phase-encoded MRI of turbulent flow through a dysfunctional bileaflet mechanical heart valve.
MAGMA. 2014 Jun;27(3):227-35. doi: 10.1007/s10334-013-0408-1. Epub 2013 Sep 24.
4
Tortuosity triggers platelet activation and thrombus formation in microvessels.
J Biomech Eng. 2011 Dec;133(12):121004. doi: 10.1115/1.4005478.
5
Role of Computational Simulations in Heart Valve Dynamics and Design of Valvular Prostheses.
Cardiovasc Eng Technol. 2010 Mar;1(1):18-38. doi: 10.1007/s13239-010-0002-x.
6
Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves.
Ann Biomed Eng. 2010 Nov;38(11):3295-310. doi: 10.1007/s10439-010-0086-3. Epub 2010 Jun 23.
7
Towards non-thrombogenic performance of blood recirculating devices.
Ann Biomed Eng. 2010 Mar;38(3):1236-56. doi: 10.1007/s10439-010-9905-9. Epub 2010 Feb 4.
9
Simulation of the three-dimensional hinge flow fields of a bileaflet mechanical heart valve under aortic conditions.
Ann Biomed Eng. 2010 Mar;38(3):841-53. doi: 10.1007/s10439-009-9857-0. Epub 2009 Dec 4.
10
FLOW DYNAMIC COMPARISON BETWEEN RECESSED HINGE AND OPEN PIVOT BI-LEAFLET HEART VALVE DESIGNS.
J Mech Med Biol. 2009 Jun 1;9(2):161-176. doi: 10.1142/S0219519409002912.

本文引用的文献

1
Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses.
Ann Biomed Eng. 2008 Feb;36(2):276-97. doi: 10.1007/s10439-007-9411-x. Epub 2007 Nov 30.
2
Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow.
Ann Biomed Eng. 2007 Aug;35(8):1347-56. doi: 10.1007/s10439-007-9308-8. Epub 2007 Apr 13.
3
Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure.
Ann Biomed Eng. 2006 Oct;34(10):1519-34. doi: 10.1007/s10439-006-9194-5. Epub 2006 Sep 30.
5
Flow in prosthetic heart valves: state-of-the-art and future directions.
Ann Biomed Eng. 2005 Dec;33(12):1689-94. doi: 10.1007/s10439-005-8759-z.
7
Fluid mechanics of heart valves.
Annu Rev Biomed Eng. 2004;6:331-62. doi: 10.1146/annurev.bioeng.6.040803.140111.
8
Flow-induced platelet activation in mechanical heart valves.
J Heart Valve Dis. 2004 May;13(3):501-8.
9
Dynamics of blood flow and platelet transport in pathological vessels.
Ann N Y Acad Sci. 2004 May;1015:351-66. doi: 10.1196/annals.1302.031.
10
Path-dependent hemodynamics of the stenosed carotid bifurcation.
Ann Biomed Eng. 2003 Oct;31(9):1054-65. doi: 10.1114/1.1603257.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验