School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Ann Biomed Eng. 2010 Nov;38(11):3295-310. doi: 10.1007/s10439-010-0086-3. Epub 2010 Jun 23.
Thromboembolic complications (TECs) of bileaflet mechanical heart valves (BMHVs) are believed to be due to the nonphysiologic mechanical stresses imposed on blood elements by the hinge flows. Relating hinge flow features to design features is, therefore, essential to ultimately design BMHVs with lower TEC rates. This study aims at simulating the pulsatile three-dimensional hinge flows of three BMHVs and estimating the TEC potential associated with each hinge design. Hinge geometries are constructed from micro-computed tomography scans of BMHVs. Simulations are conducted using a Cartesian sharp-interface immersed-boundary methodology combined with a second-order accurate fractional-step method. Leaflet motion and flow boundary conditions are extracted from fluid-structure-interaction simulations of BMHV bulk flow. The numerical results are analyzed using a particle-tracking approach coupled with existing blood damage models. The gap width and, more importantly, the shape of the recess and leaflet are found to impact the flow distribution and TEC potential. Smooth, streamlined surfaces appear to be more favorable than sharp corners or sudden shape transitions. The developed framework will enable pragmatic and cost-efficient preclinical evaluation of BMHV prototypes prior to valve manufacturing. Application to a wide range of hinges with varying design parameters will eventually help in determining the optimal hinge design.
双叶机械心脏瓣膜(BMHV)的血栓栓塞并发症(TEC)被认为是由于铰链流对血液成分施加的非生理机械应力所致。因此,将铰链流特征与设计特征联系起来对于最终设计 TEC 率较低的 BMHV 至关重要。本研究旨在模拟三种 BMHV 的脉动三维铰链流,并估计每种铰链设计相关的 TEC 潜力。铰链几何形状是从 BMHV 的微计算机断层扫描中构建的。使用笛卡尔尖锐界面浸入边界方法结合二阶精确分数步方法进行模拟。通过 BMHV 整体流动的流固耦合模拟提取叶片运动和流动边界条件。使用粒子跟踪方法结合现有的血液损伤模型对数值结果进行分析。发现间隙宽度,更重要的是,凹槽和叶片的形状会影响流动分布和 TEC 潜力。光滑、流线型的表面似乎比尖锐的角落或突然的形状过渡更有利。所开发的框架将能够在瓣膜制造之前对 BMHV 原型进行务实且具有成本效益的临床前评估。应用于具有不同设计参数的广泛铰链最终将有助于确定最佳铰链设计。