Suppr超能文献

朝着血液再循环设备的非血栓性能发展。

Towards non-thrombogenic performance of blood recirculating devices.

机构信息

Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.

出版信息

Ann Biomed Eng. 2010 Mar;38(3):1236-56. doi: 10.1007/s10439-010-9905-9. Epub 2010 Feb 4.

Abstract

Implantable blood recirculating devices have provided life saving solutions to patients with severe cardiovascular diseases. However, common problems of hemolysis and thromboembolism remain an impediment to these devices. In this article, we present a brief review of the work by several groups in the field that has led to the development of new methodologies that may facilitate achieving the daunting goal of optimizing the thrombogenic performance of blood recirculating devices. The aim is to describe work which pertains to the interaction between flow-induced stresses and the blood constituents, and that supports the hypothesis that thromboembolism in prosthetic blood recirculating devices is initiated and maintained primarily by the non-physiological flow patterns and stresses that activate and enhance the aggregation of blood platelets, increasing the risk of thromboembolism and cardioembolic stroke. Such work includes state-of-the-art numerical and experimental tools used to elucidate flow-induced mechanisms leading to thromboembolism in prosthetic devices. Following the review, the paper describes several efforts conducted by some of the groups active in the field, and points to several directions that should be pursued in the future in order to achieve the goal for blood recirculating prosthetic devices becoming more effective as destination therapy in the future.

摘要

植入式血液再循环装置为严重心血管疾病患者提供了救生解决方案。然而,常见的溶血和血栓栓塞问题仍然是这些装置的障碍。本文简要回顾了该领域的几个小组的工作,这些工作导致了新方法的发展,这些新方法可能有助于实现优化血液再循环装置血栓形成性能的艰巨目标。目的是描述与流致应力和血液成分相互作用有关的工作,并支持以下假设:即人造血液再循环装置中的血栓栓塞主要是由激活和增强血小板聚集的非生理流动模式和应力引发和维持的,从而增加血栓栓塞和心源性中风的风险。这类工作包括用于阐明导致人造装置血栓形成的流致机制的最先进的数值和实验工具。在综述之后,本文描述了该领域一些活跃小组所进行的几项工作,并指出了未来为实现血液再循环假体装置成为未来有效治疗目标而应追求的几个方向。

相似文献

1
Towards non-thrombogenic performance of blood recirculating devices.
Ann Biomed Eng. 2010 Mar;38(3):1236-56. doi: 10.1007/s10439-010-9905-9. Epub 2010 Feb 4.
2
Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices.
Expert Rev Med Devices. 2004 Sep;1(1):65-80. doi: 10.1586/17434440.1.1.65.
4
Innovative developments of the heart valves designed for use in ventricular assist devices.
Expert Rev Med Devices. 2005 Jan;2(1):61-71. doi: 10.1586/17434440.2.1.61.
5
Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach.
Comput Methods Programs Biomed. 2024 Dec;257:108469. doi: 10.1016/j.cmpb.2024.108469. Epub 2024 Oct 28.
7
Flow in prosthetic heart valves: state-of-the-art and future directions.
Ann Biomed Eng. 2005 Dec;33(12):1689-94. doi: 10.1007/s10439-005-8759-z.
8
Left Ventricular Assist Devices: Challenges Toward Sustaining Long-Term Patient Care.
Ann Biomed Eng. 2017 Aug;45(8):1836-1851. doi: 10.1007/s10439-017-1858-9. Epub 2017 May 31.
9
Medical device-induced thrombosis: what causes it and how can we prevent it?
J Thromb Haemost. 2015 Jun;13 Suppl 1:S72-81. doi: 10.1111/jth.12961.
10
Design of a pulsatile flow facility to evaluate thrombogenic potential of implantable cardiac devices.
J Biomech Eng. 2015 Apr;137(4):045001. doi: 10.1115/1.4029579. Epub 2015 Feb 11.

引用本文的文献

2
New insights and novel perspectives in bileaflet mechanical heart valve prostheses thromboresistance.
J Cardiothorac Surg. 2024 May 17;19(1):292. doi: 10.1186/s13019-024-02786-9.
3
Re: Comparison of Clinical Performance Between Two Types of Symmetric-Tip Hemodialysis Catheters: A Single-Centre, Randomized Trial.
Cardiovasc Intervent Radiol. 2023 Dec;46(12):1761-1762. doi: 10.1007/s00270-023-03551-6. Epub 2023 Sep 13.
5
Hemocompatibility and hemodynamic comparison of two centrifugal LVADs: HVAD and HeartMate3.
Biomech Model Mechanobiol. 2023 Jun;22(3):871-883. doi: 10.1007/s10237-022-01686-y. Epub 2023 Jan 17.
6
A New Mathematical Numerical Model to Evaluate the Risk of Thrombosis in Three Clinical Ventricular Assist Devices.
Bioengineering (Basel). 2022 May 27;9(6):235. doi: 10.3390/bioengineering9060235.
7
A Valveless Pulsatile Pump for Heart Failure with Preserved Ejection Fraction: Hemo- and Fluid Dynamic Feasibility.
Ann Biomed Eng. 2020 Jun;48(6):1821-1836. doi: 10.1007/s10439-020-02492-2. Epub 2020 Mar 30.
9
10

本文引用的文献

5
Flow behavior within the 12-cc Penn State pulsatile pediatric ventricular assist device: an experimental study of the initial design.
Artif Organs. 2008 Jun;32(6):442-52. doi: 10.1111/j.1525-1594.2008.00565.x. Epub 2008 Apr 16.
6
Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
Ann Biomed Eng. 2008 Jun;36(6):905-20. doi: 10.1007/s10439-008-9478-z. Epub 2008 Mar 11.
8
Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses.
Ann Biomed Eng. 2008 Feb;36(2):276-97. doi: 10.1007/s10439-007-9411-x. Epub 2007 Nov 30.
9
Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies.
Artif Organs. 2007 Sep;31(9):677-88. doi: 10.1111/j.1525-1594.2007.00446.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验