Suppr超能文献

在标准冲击波碎石术(SWL)期间,低能量冲击波预处理可诱导肾血管收缩:这是一种已知可减少SWL诱导的肾损伤的治疗方案。

Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury.

作者信息

Handa Rajash K, Bailey Michael R, Paun Marla, Gao Sujuan, Connors Bret A, Willis Lynn R, Evan Andrew P

机构信息

Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.

出版信息

BJU Int. 2009 May;103(9):1270-4. doi: 10.1111/j.1464-410X.2008.08277.x. Epub 2008 Dec 22.

Abstract

OBJECTIVE

To test the hypothesis that the pretreatment of the kidney with low-energy shock waves (SWs) will induce renal vasoconstriction sooner than a standard clinical dose of high-energy SWs, thus providing a potential mechanism by which the pretreatment SW lithotripsy (SWL) protocol reduces tissue injury.

MATERIALS AND METHODS

Female farm pigs (6-weeks-old) were anaesthetized with isoflurane and the lower pole of the right kidney treated with SWs using a conventional electrohydraulic lithotripter (HM3, Dornier GmbH, Germany). Pulsed Doppler ultrasonography was used to measure renal resistive index (RI) in blood vessels as a measure of resistance/impedance to blood flow. RI was recorded from one intralobar artery located in the targeted pole of the kidney, and measurements taken from pigs given sham SW treatment (Group 1; no SWs, four pigs), a standard clinical dose of high-energy SWs (Group 2; 2000 SWs, 24 kV, 120 SWs/min, seven pigs), low-energy SW pretreatment followed by high-energy SWL (Group 3; 500 SWs, 12 kV, 120 SWs/min + 2000 SWs, 24 kV, 120 SWs/min, eight pigs) and low-energy SW pretreatment alone (Group 4; 500 SWs, 12 kV, 120 SWs/min, six pigs).

RESULTS

Baseline RI (approximately 0.61) was similar for all groups. Pigs receiving sham SW treatment (Group 1) had no significant change in RI. A standard clinical dose of high-energy SWs (Group 2) did not significantly alter RI during treatment, but did increase RI at 45 min after SWL. Low-energy SWs did not alter RI in Group 3 pigs, but subsequent treatment with a standard clinical dose of high-energy SWs resulted in a significantly earlier (at 1000 SWs) and greater (two-fold) rise in RI than that in Group 2 pigs. This rise in RI during the low/high-energy SWL protocol was not due to a delayed vasoconstrictor response of pretreatment, as low-energy SW treatment alone (Group 4) did not increase RI until 65 min after SWL.

CONCLUSIONS

The pretreatment protocol induces renal vasoconstriction during the period of SW application whereas the standard protocol shows vasoconstriction occurring after SWL. Thus, the earlier and greater rise in RI during the pretreatment protocol may be causally associated with a reduction in tissue injury.

摘要

目的

验证低能量冲击波(SW)预处理肾脏比标准临床剂量的高能量SW更早诱导肾血管收缩这一假说,从而为预处理SW碎石术(SWL)方案减少组织损伤提供一种潜在机制。

材料与方法

用异氟烷麻醉6周龄雌性农场猪,使用传统的液电碎石机(HM3,德国多尼尔有限公司)对右肾下极进行SW治疗。采用脉冲多普勒超声测量血管中的肾阻力指数(RI),作为血流阻力/阻抗的指标。从位于肾脏目标极的一条叶内动脉记录RI,测量对象包括接受假SW治疗的猪(第1组;无SW,4头猪)、标准临床剂量的高能量SW治疗的猪(第2组;2000次SW,24 kV,120次SW/分钟,7头猪)、低能量SW预处理后进行高能量SWL的猪(第3组;500次SW,12 kV,120次SW/分钟 + 2000次SW,24 kV,120次SW/分钟,8头猪)以及仅接受低能量SW预处理的猪(第4组;500次SW,12 kV,120次SW/分钟,6头猪)。

结果

所有组的基线RI(约0.61)相似。接受假SW治疗的猪(第1组)RI无显著变化。标准临床剂量的高能量SW(第2组)在治疗期间未显著改变RI,但在SWL后45分钟时RI升高。低能量SW未改变第3组猪的RI,但随后用标准临床剂量的高能量SW治疗导致RI比第2组猪显著更早(在1000次SW时)且更大幅度(两倍)升高。在低/高能量SWL方案期间RI的这种升高并非由于预处理的血管收缩反应延迟,因为仅低能量SW治疗(第4组)直到SWL后65分钟才使RI升高。

结论

预处理方案在SW应用期间诱导肾血管收缩,而标准方案显示血管收缩发生在SWL之后。因此,预处理方案期间RI更早且更大幅度的升高可能与组织损伤的减少存在因果关系。

相似文献

2
Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy.
BJU Int. 2012 Dec;110(11 Pt C):E1041-7. doi: 10.1111/j.1464-410X.2012.11207.x. Epub 2012 May 22.
4
Evaluation of shock wave lithotripsy injury in the pig using a narrow focal zone lithotriptor.
BJU Int. 2012 Nov;110(9):1376-85. doi: 10.1111/j.1464-410X.2012.11160.x. Epub 2012 Apr 23.
5
Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig.
BJU Int. 2008 Feb;101(3):382-8. doi: 10.1111/j.1464-410X.2007.07231.x. Epub 2007 Oct 8.
7
Shock wave lithotripsy does not impair renal function in a Swine model of metabolic syndrome.
J Endourol. 2015 Apr;29(4):468-73. doi: 10.1089/end.2014.0570. Epub 2014 Nov 18.
8
Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping.
BJU Int. 2009 Jan;103(1):104-7. doi: 10.1111/j.1464-410X.2008.07922.x. Epub 2008 Aug 1.
9
Renal Vasoconstriction Occurs Early During Shockwave Lithotripsy in Humans.
J Endourol. 2015 Dec;29(12):1392-5. doi: 10.1089/end.2015.0315. Epub 2015 Oct 26.
10
Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery.
BJU Int. 2007 Sep;100(3):624-7; discussion 627-8. doi: 10.1111/j.1464-410X.2007.07007.x. Epub 2007 Jun 5.

引用本文的文献

1
A 10-year renaissance of en bloc resection of bladder tumors (ERBT): Are we approaching the peak or is it back to the trough?
World J Urol. 2023 Oct;41(10):2607-2615. doi: 10.1007/s00345-023-04439-3. Epub 2023 May 27.
2
Outcomes of extracorporeal shock wave lithotripsy for ureteral stones according to ESWL intensity.
Transl Androl Urol. 2021 Apr;10(4):1588-1595. doi: 10.21037/tau-20-1397.
3
Renal Protection Phenomenon Observed in a Porcine Model After Electromagnetic Lithotripsy Using a Treatment Pause.
J Endourol. 2021 May;35(5):682-686. doi: 10.1089/end.2020.0681. Epub 2021 Feb 22.
6
Optimisation of shock wave lithotripsy: a systematic review of technical aspects to improve outcomes.
Transl Androl Urol. 2019 Sep;8(Suppl 4):S389-S397. doi: 10.21037/tau.2019.06.07.
7
Evaluation of Renal Stone Comminution and Injury by Burst Wave Lithotripsy in a Pig Model.
J Endourol. 2019 Oct;33(10):787-792. doi: 10.1089/end.2018.0886. Epub 2019 May 27.
8
Indications and contraindications for shock wave lithotripsy and how to improve outcomes.
Asian J Urol. 2018 Oct;5(4):256-263. doi: 10.1016/j.ajur.2018.08.006. Epub 2018 Sep 4.
9
How can and should we optimize extracorporeal shockwave lithotripsy?
Urolithiasis. 2018 Feb;46(1):3-17. doi: 10.1007/s00240-017-1020-z. Epub 2017 Nov 25.

本文引用的文献

1
Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping.
BJU Int. 2009 Jan;103(1):104-7. doi: 10.1111/j.1464-410X.2008.07922.x. Epub 2008 Aug 1.
4
Multimodal evaluation of renal perfusional changes due to extracorporeal shock wave lithotripsy.
BJU Int. 2008 Mar;101(6):731-5. doi: 10.1111/j.1464-410X.2007.07281.x. Epub 2007 Oct 17.
6
Reducing shock number dramatically decreases lesion size in a juvenile kidney model.
J Endourol. 2006 Sep;20(9):607-11. doi: 10.1089/end.2006.20.607.
8
Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves.
J Am Soc Nephrol. 2006 Mar;17(3):663-73. doi: 10.1681/ASN.2005060634. Epub 2006 Feb 1.
9
Crystal-associated nephropathy in patients with brushite nephrolithiasis.
Kidney Int. 2005 Feb;67(2):576-91. doi: 10.1111/j.1523-1755.2005.67114.x.
10
Clinical implications of abundant calcium phosphate in routinely analyzed kidney stones.
Kidney Int. 2004 Aug;66(2):777-85. doi: 10.1111/j.1523-1755.2004.00803.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验