Suppr超能文献

猪模型中利用冲击波碎石术粉碎肾结石及损伤的评估。

Evaluation of Renal Stone Comminution and Injury by Burst Wave Lithotripsy in a Pig Model.

机构信息

Department of Urology, University of Washington School of Medicine, Seattle, Washington.

Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington.

出版信息

J Endourol. 2019 Oct;33(10):787-792. doi: 10.1089/end.2018.0886. Epub 2019 May 27.

Abstract

Burst wave lithotripsy is an experimental technology to noninvasively fragment kidney stones with focused bursts of ultrasound (US). This study evaluated the safety and effectiveness of specific lithotripsy parameters in a porcine model of nephrolithiasis. A 6- to 7-mm human kidney stone was surgically implanted in each kidney of three pigs. A burst wave lithotripsy US transducer with an inline US imager was coupled to the flank and the lithotripter focus was aligned with the stone. Each stone was exposed to burst wave lithotripsy at 6.5 to 7 MPa focal pressure for 30 minutes under real-time image guidance. After treatment, the kidneys were removed for gross, histologic, and MRI assessment. Stone fragments were retrieved from the kidney to determine the mass comminuted to pieces <2 mm. On average, 87% of the stone mass was reduced to fragments <2 mm. In three of five treatments, stones were completely comminuted to <2-mm fragments. In two of five treatments, stones were partially disintegrated, but larger fragments remained. One stone was not treated because no suitable acoustic window was identified. No injury was detected through gross, histologic, or MRI examination in the parenchymal tissue, although petechial damage and surface erosion were identified on the urothelium of the collecting system limited to the area around the stone. Burst wave lithotripsy can consistently produce stone fragments small enough to spontaneously pass by transcutaneous administration of US pulses. The data suggest that such exposures produce minimal injury to the kidney and urinary tract.

摘要

冲击波碎石术是一种利用聚焦超声(US)无创性破碎肾结石的实验技术。本研究在肾结石猪模型中评估了特定碎石参数的安全性和有效性。在三头猪的每侧肾脏中,通过手术植入了一个 6 至 7 毫米的人肾结石。一个带有内置 US 成像器的冲击波碎石术 US 换能器被耦合到侧腹,碎石焦点与结石对齐。在实时图像引导下,每个结石在 6.5 至 7 MPa 焦点压力下接受冲击波碎石术 30 分钟。治疗后,取出肾脏进行大体、组织学和 MRI 评估。从肾脏中取出结石碎片,以确定质量减少到<2mm 的碎片。平均而言,87%的结石质量减少到<2mm 的碎片。在五次治疗中的三次中,结石完全碎裂成<2mm 的碎片。在五次治疗中的两次中,结石部分崩解,但仍有较大的碎片残留。有一颗石头没有治疗,因为没有找到合适的声窗。尽管在集尿系统的尿路上皮(仅限于结石周围区域)上发现了瘀点损伤和表面侵蚀,但在实质组织的大体、组织学或 MRI 检查中未发现损伤。冲击波碎石术可以持续产生足够小的结石碎片,通过经皮 US 脉冲给药即可自行排出。这些数据表明,这种暴露对肾脏和泌尿道造成的损伤最小。

相似文献

1
Evaluation of Renal Stone Comminution and Injury by Burst Wave Lithotripsy in a Pig Model.
J Endourol. 2019 Oct;33(10):787-792. doi: 10.1089/end.2018.0886. Epub 2019 May 27.
2
Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging.
J Endourol. 2017 Aug;31(8):786-792. doi: 10.1089/end.2017.0202. Epub 2017 Jun 16.
3
Fragmentation of urinary calculi in vitro by burst wave lithotripsy.
J Urol. 2015 Jan;193(1):338-44. doi: 10.1016/j.juro.2014.08.009. Epub 2014 Aug 9.
5
Factors Affecting Tissue Cavitation during Burst Wave Lithotripsy.
Ultrasound Med Biol. 2021 Aug;47(8):2286-2295. doi: 10.1016/j.ultrasmedbio.2021.04.021. Epub 2021 May 31.
6
Fragmentation of Stones by Burst Wave Lithotripsy in the First 19 Humans.
J Urol. 2022 May;207(5):1067-1076. doi: 10.1097/JU.0000000000002446. Epub 2022 Mar 21.
7
An in vivo demonstration of efficacy and acute safety of burst wave lithotripsy using a porcine model.
Proc Meet Acoust. 2018 Nov 5;35(1). doi: 10.1121/2.0000975. Epub 2019 Feb 6.
9
Evaluation of Urinary Stone Comminution with a Clinical Burst Wave Lithotripsy System.
J Endourol. 2020 Nov;34(11):1167-1173. doi: 10.1089/end.2019.0873. Epub 2020 Mar 20.
10
High-frequency shock wave lithotripsy: stone comminution and evaluation of renal parenchyma injury in a porcine ex-vivo model.
World J Urol. 2023 Jul;41(7):1929-1934. doi: 10.1007/s00345-023-04441-9. Epub 2023 Jun 7.

引用本文的文献

1
Burst wave lithotripsy - a paradigm shift: inferences from a scoping review.
World J Urol. 2025 Apr 25;43(1):250. doi: 10.1007/s00345-025-05645-x.
2
Revealing physical interactions of ultrasound waves with the body through photoelasticity imaging.
Opt Lasers Eng. 2024 Oct;181. doi: 10.1016/j.optlaseng.2024.108361. Epub 2024 Jun 14.
3
Agarose as a Tissue Mimic for the Porcine Heart, Kidney, and Liver: Measurements and a Springpot Model.
Bioengineering (Basel). 2024 Jun 8;11(6):589. doi: 10.3390/bioengineering11060589.
4
Proof-of-concept for a novel nanotechnology-based treatment for urolithiasis.
Urolithiasis. 2024 Apr 6;52(1):60. doi: 10.1007/s00240-024-01564-5.
7
High-frequency shock wave lithotripsy: stone comminution and evaluation of renal parenchyma injury in a porcine ex-vivo model.
World J Urol. 2023 Jul;41(7):1929-1934. doi: 10.1007/s00345-023-04441-9. Epub 2023 Jun 7.
8
Recent Advances in the Science of Burst Wave Lithotripsy and Ultrasonic Propulsion.
BME Front. 2022;2022. doi: 10.34133/2022/9847952. Epub 2022 Feb 17.
10
Functional and Morphological Changes Associated with Burst Wave Lithotripsy-Treated Pig Kidneys.
J Endourol. 2022 Dec;36(12):1580-1585. doi: 10.1089/end.2022.0295. Epub 2022 Sep 5.

本文引用的文献

1
Combined Burst Wave Lithotripsy and Ultrasonic Propulsion for Improved Urinary Stone Fragmentation.
J Endourol. 2018 Apr;32(4):344-349. doi: 10.1089/end.2017.0675. Epub 2018 Mar 20.
2
Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging.
J Endourol. 2017 Aug;31(8):786-792. doi: 10.1089/end.2017.0202. Epub 2017 Jun 16.
4
First in Human Clinical Trial of Ultrasonic Propulsion of Kidney Stones.
J Urol. 2016 Apr;195(4 Pt 1):956-64. doi: 10.1016/j.juro.2015.10.131. Epub 2015 Oct 30.
5
A new active cavitation mapping technique for pulsed HIFU applications--bubble Doppler.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Oct;61(10):1698-708. doi: 10.1109/TUFFC.2014.006502.
6
Fragmentation of urinary calculi in vitro by burst wave lithotripsy.
J Urol. 2015 Jan;193(1):338-44. doi: 10.1016/j.juro.2014.08.009. Epub 2014 Aug 9.
7
Evidence for trapped surface bubbles as the cause for the twinkling artifact in ultrasound imaging.
Ultrasound Med Biol. 2013 Jun;39(6):1026-38. doi: 10.1016/j.ultrasmedbio.2013.01.011. Epub 2013 Apr 3.
8
B-mode ultrasound versus color Doppler twinkling artifact in detecting kidney stones.
J Endourol. 2013 Feb;27(2):149-53. doi: 10.1089/end.2012.0430. Epub 2013 Jan 30.
9
Effect of lithotripter focal width on stone comminution in shock wave lithotripsy.
J Acoust Soc Am. 2010 Apr;127(4):2635-45. doi: 10.1121/1.3308409.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验