Suppr超能文献

一种用于全膝关节置换术接触力数值模拟的参数化方法。

A parametric approach to numerical modeling of TKR contact forces.

作者信息

Lundberg Hannah J, Foucher Kharma C, Wimmer Markus A

机构信息

Department of Orthopedic Surgery, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA.

出版信息

J Biomech. 2009 Mar 11;42(4):541-5. doi: 10.1016/j.jbiomech.2008.11.030. Epub 2009 Jan 19.

Abstract

In vivo knee contact forces are difficult to determine using numerical methods because there are more unknown forces than equilibrium equations available. We developed parametric methods for computing contact forces across the knee joint during the stance phase of level walking. Three-dimensional contact forces were calculated at two points of contact between the tibia and the femur, one on the lateral aspect of the tibial plateau, and one on the medial side. Muscle activations were parametrically varied over their physiologic range resulting in a solution space of contact forces. The obtained solution space was reasonably small and the resulting force pattern compared well to a previous model from the literature for kinematics and external kinetics from the same patient. Peak forces of the parametric model and the previous model were similar for the first half of the stance phase, but differed for the second half. The previous model did not take into account the transverse external moment about the knee and could not calculate muscle activation levels. Ultimately, the parametric model will result in more accurate contact force inputs for total knee simulators, as current inputs are not generally based on kinematics and kinetics inputs from TKR patients.

摘要

使用数值方法很难确定体内膝关节接触力,因为未知力比可用的平衡方程更多。我们开发了参数化方法来计算在平地行走站立阶段膝关节的接触力。在胫骨和股骨的两个接触点计算三维接触力,一个在胫骨平台的外侧,另一个在内侧。肌肉激活在其生理范围内进行参数变化,从而得到接触力的解空间。所获得的解空间相当小,并且所得到的力模式与文献中来自同一患者的运动学和外部动力学的先前模型相比匹配良好。参数化模型和先前模型的峰值力在站立阶段的前半部分相似,但后半部分不同。先前的模型没有考虑膝关节周围的横向外力矩,并且无法计算肌肉激活水平。最终,参数化模型将为全膝关节模拟器提供更准确的接触力输入,因为目前的输入通常不是基于全膝关节置换术(TKR)患者的运动学和动力学输入。

相似文献

1
A parametric approach to numerical modeling of TKR contact forces.
J Biomech. 2009 Mar 11;42(4):541-5. doi: 10.1016/j.jbiomech.2008.11.030. Epub 2009 Jan 19.
2
Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
J Biomech. 2013 Nov 15;46(16):2778-86. doi: 10.1016/j.jbiomech.2013.09.005. Epub 2013 Sep 12.
3
Tractive forces during rolling motion of the knee: implications for wear in total knee replacement.
J Biomech. 1997 Feb;30(2):131-7. doi: 10.1016/s0021-9290(96)00112-1.
4
How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces.
J Biomech. 2015 Feb 26;48(4):644-650. doi: 10.1016/j.jbiomech.2014.12.049. Epub 2015 Jan 5.
6
Three-dimensional dynamic behaviour of the human knee joint under impact loading.
Med Eng Phys. 1998 Jun;20(4):276-90. doi: 10.1016/s1350-4533(98)00010-1.
9
Individual muscle contributions to the axial knee joint contact force during normal walking.
J Biomech. 2010 Oct 19;43(14):2780-4. doi: 10.1016/j.jbiomech.2010.06.011. Epub 2010 Jul 23.
10
Selective lateral muscle activation in moderate medial knee osteoarthritis subjects does not unload medial knee condyle.
J Biomech. 2014 Apr 11;47(6):1409-15. doi: 10.1016/j.jbiomech.2014.01.038. Epub 2014 Jan 30.

引用本文的文献

3
Are Instrumented Knee Forces Representative of a Larger Population of Cruciate-Retaining Total Knee Arthroplasties?
J Arthroplasty. 2017 Jul;32(7):2268-2273. doi: 10.1016/j.arth.2017.01.054. Epub 2017 Feb 7.
4
Computational Framework for Determining Patient-Specific Total Knee Arthroplasty Loading.
J Med Device. 2013 Dec;7(4):0409041-409041. doi: 10.1115/1.4025765. Epub 2013 Dec 5.
5
Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.
J Biomech Eng. 2014 Feb;136(2):021032. doi: 10.1115/1.4026359.
8
Comparison of ISO standard and TKR patient axial force profiles during the stance phase of gait.
Proc Inst Mech Eng H. 2012 Mar;226(3):227-34. doi: 10.1177/0954411911431650.
10
Grand challenge competition to predict in vivo knee loads.
J Orthop Res. 2012 Apr;30(4):503-13. doi: 10.1002/jor.22023. Epub 2011 Dec 12.

本文引用的文献

2
In vivo contact pressures in total knee arthroplasty.
J Arthroplasty. 2007 Apr;22(3):404-16. doi: 10.1016/j.arth.2006.07.008.
4
In vivo medial and lateral tibial loads during dynamic and high flexion activities.
J Orthop Res. 2007 May;25(5):593-602. doi: 10.1002/jor.20362.
6
Tibial forces measured in vivo after total knee arthroplasty.
J Arthroplasty. 2006 Feb;21(2):255-62. doi: 10.1016/j.arth.2005.07.011.
7
Knee mechanics: a review of past and present techniques to determine in vivo loads.
J Biomech. 2005 Feb;38(2):215-28. doi: 10.1016/j.jbiomech.2004.02.041.
8
Tibio-femoral loading during human gait and stair climbing.
J Orthop Res. 2004 May;22(3):625-32. doi: 10.1016/j.orthres.2003.09.003.
9
A new parametric approach for modeling hip forces during gait.
J Biomech. 2003 Jan;36(1):113-9. doi: 10.1016/s0021-9290(02)00328-7.
10
Dynamic knee loads during gait predict proximal tibial bone distribution.
J Biomech. 1998 May;31(5):423-30. doi: 10.1016/s0021-9290(98)00028-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验