Suppr超能文献

基于 MRI 的 MR/PET 衰减校正的多尺度颅骨分割。

Multiscale segmentation of the skull in MR images for MRI-based attenuation correction of combined MR/PET.

机构信息

Department of Radiology and Imaging Sciences, Center for Systems Imaging, Emory University, Atlanta, Georgia, USA.

出版信息

J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1037-45. doi: 10.1136/amiajnl-2012-001544. Epub 2013 Jun 12.

Abstract

BACKGROUND AND OBJECTIVE

Combined magnetic resonance/positron emission tomography (MR/PET) is a relatively new, hybrid imaging modality. MR-based attenuation correction often requires segmentation of the bone on MR images. In this study, we present an automatic segmentation method for the skull on MR images for attenuation correction in brain MR/PET applications.

MATERIALS AND METHODS

Our method transforms T1-weighted MR images to the Radon domain and then detects the features of the skull image. In the Radon domain we use a bilateral filter to construct a multiscale image series. For the repeated convolution we increase the spatial smoothing in each scale and make the width of the spatial and range Gaussian function doubled in each scale. Two filters with different kernels along the vertical direction are applied along the scales from the coarse to fine levels. The results from a coarse scale give a mask for the next fine scale and supervise the segmentation in the next fine scale. The use of the multiscale bilateral filtering scheme is to improve the robustness of the method for noise MR images. After combining the two filtered sinograms, the reciprocal binary sinogram of the skull is obtained for the reconstruction of the skull image.

RESULTS

This method has been tested with brain phantom data, simulated brain data, and real MRI data. For real MRI data the Dice overlap ratios are 92.2%±1.9% between our segmentation and manual segmentation.

CONCLUSIONS

The multiscale segmentation method is robust and accurate and can be used for MRI-based attenuation correction in combined MR/PET.

摘要

背景与目的

磁共振/正电子发射断层扫描(MR/PET)是一种相对较新的混合成像方式。基于磁共振的衰减校正通常需要在磁共振图像上对骨骼进行分割。在这项研究中,我们提出了一种用于脑 MR/PET 应用中衰减校正的基于磁共振的颅骨自动分割方法。

材料与方法

我们的方法将 T1 加权磁共振图像转换到 Radon 域,然后检测颅骨图像的特征。在 Radon 域中,我们使用双边滤波器构建多尺度图像序列。对于重复卷积,我们在每个尺度上增加空间平滑度,并在每个尺度上将空间和范围高斯函数的宽度加倍。在从粗到细的尺度上,沿垂直方向应用两个具有不同核的滤波器。从粗尺度得到的结果为下一个细尺度提供了一个掩模,并在下一个细尺度的分割中进行监督。使用多尺度双边滤波方案是为了提高方法对噪声磁共振图像的鲁棒性。在合并两个滤波正弦图后,获得颅骨的倒数二进制正弦图,用于重建颅骨图像。

结果

该方法已在脑体模数据、模拟脑数据和真实 MRI 数据上进行了测试。对于真实的 MRI 数据,我们的分割与手动分割的 Dice 重叠比为 92.2%±1.9%。

结论

该多尺度分割方法具有鲁棒性和准确性,可用于基于 MRI 的联合 MR/PET 衰减校正。

相似文献

引用本文的文献

2
A review of PET attenuation correction methods for PET-MR.PET-MR的PET衰减校正方法综述
EJNMMI Phys. 2023 Sep 11;10(1):52. doi: 10.1186/s40658-023-00569-0.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验