Suppr超能文献

利用加速度计数据的频谱分析评估老年人跌倒风险——一项临床评估研究。

Assessing elderly persons' fall risk using spectral analysis on accelerometric data--a clinical evaluation study.

作者信息

Marschollek Michael, Wolf Klaus-Hendrik, Gietzelt Matthias, Nemitz Gerhard, Meyer zu Schwabedissen Hubertus, Haux Reinhold

机构信息

Institute for Medical Informatics of the University of Braunschweig-Institute of Technology and Medical School Hannover, Muehlenpfordtstrasse 23, Braunschweig, Germany.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3682-5. doi: 10.1109/IEMBS.2008.4650008.

Abstract

Falls are among the leading causes for morbidity, mortality and lasting functional disability in the elderly population. Several studies have shown the applicability of accelerometry to detect persons with a high fall risk. Most of these studies have been conducted under laboratory settings and without clear definition of 'fall risk' reference measures. The aim of our work is to provide a simple unsupervised method to assess the fall risk of elderly persons as measured by reference clinical fall risk assessment scores. Our method uses parameters computed by spectral analysis on triaxial accelerometer data recorded in a clinical setting, and is evaluated using simple logistic regression classifier models with reference to three clinical reference scores. The overall prediction accuracy of the models ranges from 65.5-89.1%, with sensitivity and specificity between 78.5-99% and 15.4-60.4%, respectively. Our results show that our simple method can be used to detect persons with a high fall risk with a fair to good predictive accuracy when tested against common clinical reference scores. Our parameters are independent of specific test procedures and therefore are suited for use in an unsupervised setting. Our future research will include the evaluation of our method in a large prospective study.

摘要

跌倒是老年人群发病、死亡和长期功能残疾的主要原因之一。多项研究表明,加速度计可用于检测跌倒风险高的人群。这些研究大多是在实验室环境下进行的,且没有对“跌倒风险”参考指标进行明确定义。我们工作的目的是提供一种简单的无监督方法,以通过参考临床跌倒风险评估分数来评估老年人的跌倒风险。我们的方法使用对临床环境中记录的三轴加速度计数据进行频谱分析计算得出的参数,并使用简单的逻辑回归分类器模型,参照三个临床参考分数进行评估。这些模型的总体预测准确率在65.5%至89.1%之间,灵敏度和特异度分别在78.5%至99%和15.4%至60.4%之间。我们的结果表明,当与常见的临床参考分数进行对比测试时,我们的简单方法可用于检测跌倒风险高的人群,预测准确率尚可。我们的参数独立于特定测试程序,因此适用于无监督环境。我们未来的研究将包括在大型前瞻性研究中评估我们的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验