Suppr超能文献

用于未来硬件实现的尖峰排序算法比较。

Comparison of spike-sorting algorithms for future hardware implementation.

作者信息

Gibson Sarah, Judy Jack W, Markovic Dejan

机构信息

Department of Electrical Engineering, University of California, Los Angeles, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5015-20. doi: 10.1109/IEMBS.2008.4650340.

Abstract

Applications such as brain-machine interfaces require hardware spike sorting in order to (1) obtain single-unit activity and (2) perform data reduction for wireless transmission of data. Such systems must be low-power, low-area, high-accuracy, automatic, and able to operate in real time. Several detection and feature extraction algorithms for spike sorting are described briefly and evaluated in terms of accuracy versus computational complexity. The nonlinear energy operator method is chosen as the optimal spike detection algorithm, being most robust over noise and relatively simple. The discrete derivatives method [1] is chosen as the optimal feature extraction method, maintaining high accuracy across SNRs with a complexity orders of magnitude less than that of traditional methods such as PCA.

摘要

诸如脑机接口之类的应用需要进行硬件尖峰分类,以便(1)获取单个神经元活动,以及(2)对数据进行降维以实现数据的无线传输。此类系统必须具备低功耗、小面积、高精度、自动化且能够实时运行的特点。简要描述了几种用于尖峰分类的检测和特征提取算法,并根据准确性与计算复杂度进行了评估。选择非线性能量算子方法作为最佳尖峰检测算法,因为它在噪声环境下最为稳健且相对简单。选择离散导数方法[1]作为最佳特征提取方法,该方法在不同信噪比下均能保持高精度,且复杂度比诸如主成分分析(PCA)等传统方法低几个数量级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验