Suppr超能文献

技术感知的神经尖峰检测、特征提取和降维算法设计。

Technology-aware algorithm design for neural spike detection, feature extraction, and dimensionality reduction.

机构信息

Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2010 Oct;18(5):469-78. doi: 10.1109/TNSRE.2010.2051683. Epub 2010 Jun 3.

Abstract

Applications such as brain-machine interfaces require hardware spike sorting in order to 1) obtain single-unit activity and 2) perform data reduction for wireless data transmission. Such systems must be low-power, low-area, high-accuracy, automatic, and able to operate in real time. Several detection, feature-extraction, and dimensionality-reduction algorithms for spike sorting are described and evaluated in terms of accuracy versus complexity. The nonlinear energy operator is chosen as the optimal spike-detection algorithm, being most robust over noise and relatively simple. Discrete derivatives is chosen as the optimal feature-extraction method, maintaining high accuracy across signal-to-noise ratios with a complexity orders of magnitude less than that of traditional methods such as principal-component analysis. We introduce the maximum-difference algorithm, which is shown to be the best dimensionality-reduction method for hardware spike sorting.

摘要

应用,如脑机接口,需要硬件尖峰排序,以便 1)获得单单元活动和 2)进行数据减少为无线数据传输。这样的系统必须是低功率,低面积,高精度,自动,并能够实时操作。几种检测,特征提取,和降维算法的尖峰排序在精度与复杂度方面进行了描述和评估。非线性能量算子被选为最优的尖峰检测算法,在噪声方面最为稳健,而且相对简单。离散导数被选为最优的特征提取方法,在信噪比高的情况下保持高精度,其复杂度比传统方法,如主成分分析,低几个数量级。我们引入最大差算法,它被证明是硬件尖峰排序的最佳降维方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验