Suppr超能文献

利用基于质谱的方法来了解α-突触核蛋白和淀粉样β的淀粉样形成和抑制。

Using mass spectrometry-based methods to understand amyloid formation and inhibition of alpha-synuclein and amyloid beta.

机构信息

Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA.

出版信息

Mass Spectrom Rev. 2024 Jul-Aug;43(4):782-825. doi: 10.1002/mas.21814. Epub 2022 Oct 12.

Abstract

Amyloid fibrils, insoluble β-sheets structures that arise from protein misfolding, are associated with several neurodegenerative disorders. Many small molecules have been investigated to prevent amyloid fibrils from forming; however, there are currently no therapeutics to combat these diseases. Mass spectrometry (MS) is proving to be effective for studying the high order structure (HOS) of aggregating proteins and for determining structural changes accompanying protein-inhibitor interactions. When combined with native MS (nMS), gas-phase ion mobility, protein footprinting, and chemical cross-linking, MS can afford regional and sometimes amino acid spatial resolution of the aggregating protein. The spatial resolution is greater than typical low-resolution spectroscopic, calorimetric, and the traditional ThT fluorescence methods used in amyloid research today. High-resolution approaches can struggle when investigating protein aggregation, as the proteins exist as complex oligomeric mixtures of many sizes and several conformations or polymorphs. Thus, MS is positioned to complement both high- and low-resolution approaches to studying amyloid fibril formation and protein-inhibitor interactions. This review covers basics in MS paired with ion mobility, continuous hydrogen-deuterium exchange (continuous HDX), pulsed hydrogen-deuterium exchange (pulsed HDX), fast photochemical oxidation of proteins (FPOP) and other irreversible labeling methods, and chemical cross-linking. We then review the applications of these approaches to studying amyloid-prone proteins with a focus on amyloid beta and alpha-synuclein. Another focus is the determination of protein-inhibitor interactions. The expectation is that MS will bring new insights to amyloid formation and thereby play an important role to prevent their formation.

摘要

淀粉样纤维,是由蛋白质错误折叠而产生的不可溶β-折叠结构,与多种神经退行性疾病有关。已经有许多小分子被研究用于防止淀粉样纤维的形成,但目前还没有针对这些疾病的治疗方法。质谱(MS)被证明在研究聚集蛋白的高级结构(HOS)和确定伴随蛋白-抑制剂相互作用的结构变化方面非常有效。当与天然 MS(nMS)、气相离子迁移率、蛋白质足迹和化学交联结合使用时,MS 可以提供聚集蛋白的区域和有时是氨基酸空间分辨率。空间分辨率大于目前用于淀粉样研究的典型低分辨率光谱、量热法和传统的 ThT 荧光方法。当研究蛋白质聚集时,高分辨率方法可能会遇到困难,因为蛋白质存在于许多大小和几种构象或多态体的复杂寡聚混合物中。因此,MS 可以补充高分辨率和低分辨率方法,用于研究淀粉样纤维形成和蛋白-抑制剂相互作用。这篇综述涵盖了与离子淌度、连续氘氢交换(continuous HDX)、脉冲氘氢交换(pulsed HDX)、蛋白质快速光氧化(FPOP)和其他不可逆标记方法以及化学交联相结合的 MS 基础知识。然后,我们回顾了这些方法在研究淀粉样蛋白倾向蛋白中的应用,重点是淀粉样β和α-突触核蛋白。另一个重点是确定蛋白-抑制剂的相互作用。我们期望 MS 将为淀粉样形成带来新的见解,并在防止其形成方面发挥重要作用。

相似文献

1
Using mass spectrometry-based methods to understand amyloid formation and inhibition of alpha-synuclein and amyloid beta.
Mass Spectrom Rev. 2024 Jul-Aug;43(4):782-825. doi: 10.1002/mas.21814. Epub 2022 Oct 12.
2
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
3
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
4
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
7
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.
Cochrane Database Syst Rev. 2022 Mar 2;3(3):CD013387. doi: 10.1002/14651858.CD013387.pub2.
8
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
9
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

引用本文的文献

1
Driving Therapeutic Innovation in Neurodegenerative Disease With Hydrogen Deuterium eXchange Mass Spectrometry.
Mol Cell Proteomics. 2025 Jun 20;24(8):101017. doi: 10.1016/j.mcpro.2025.101017.
2
High-Throughput Screening of Amyloid Inhibitors via Covalent-Labeling Mass Spectrometry.
Anal Chem. 2025 Jul 1;97(25):12989-12997. doi: 10.1021/acs.analchem.4c06418. Epub 2025 Jun 19.
3
Experimental methods for studying amyloid cross-interactions.
Protein Sci. 2025 Jun;34(6):e70151. doi: 10.1002/pro.70151.
4
Recent Advances in Mass Spectrometry-Based Bottom-Up Proteomics.
Anal Chem. 2025 Mar 11;97(9):4728-4749. doi: 10.1021/acs.analchem.4c06750. Epub 2025 Feb 25.
5
Accessing Different Protein Conformer Ensembles with Tunable Capillary Vibrating Sharp-Edge Spray Ionization.
J Phys Chem B. 2025 Feb 6;129(5):1626-1639. doi: 10.1021/acs.jpcb.4c04842. Epub 2025 Jan 29.
7
Mass Spectrometry-Based Protein Footprinting for Protein Structure Characterization.
Acc Chem Res. 2025 Jan 21;58(2):165-176. doi: 10.1021/acs.accounts.4c00545. Epub 2025 Jan 5.
8
Characterizing heterogeneity in amyloid formation processes.
Curr Opin Struct Biol. 2024 Dec;89:102951. doi: 10.1016/j.sbi.2024.102951. Epub 2024 Nov 19.
9
Evaluating Chemical Footprinting-Induced Perturbation of Protein Higher Order Structure.
Anal Chem. 2024 Jun 11;96(23):9693-9703. doi: 10.1021/acs.analchem.4c01735. Epub 2024 May 30.
10
Tryptanthrin Analogs Substoichiometrically Inhibit Seeded and Unseeded Tau4RD Aggregation.
bioRxiv. 2024 Feb 3:2024.02.02.578649. doi: 10.1101/2024.02.02.578649.

本文引用的文献

1
Mass Spectrometry Methods for Measuring Protein Stability.
Chem Rev. 2022 Apr 27;122(8):7690-7719. doi: 10.1021/acs.chemrev.1c00857. Epub 2022 Mar 22.
2
Advances in mass spectrometry-based footprinting of membrane proteins.
Proteomics. 2022 Apr;22(8):e2100222. doi: 10.1002/pmic.202100222.
3
The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics.
Nat Rev Drug Discov. 2022 Apr;21(4):306-318. doi: 10.1038/s41573-022-00391-w. Epub 2022 Feb 17.
4
Protein Chemistry Combined with Mass Spectrometry for Protein Structure Determination.
Chem Rev. 2022 Apr 27;122(8):7488-7499. doi: 10.1021/acs.chemrev.1c00302. Epub 2021 Dec 30.
5
Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein-Protein Interactions─A Method for All Seasons.
Chem Rev. 2022 Apr 27;122(8):7500-7531. doi: 10.1021/acs.chemrev.1c00786. Epub 2021 Nov 19.
6
Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology.
Chem Rev. 2022 Apr 27;122(8):7415-7441. doi: 10.1021/acs.chemrev.1c00377. Epub 2021 Oct 12.
7
Hydroxyl Radical Protein Footprinting: A Mass Spectrometry-Based Structural Method for Studying the Higher Order Structure of Proteins.
Chem Rev. 2022 Apr 27;122(8):7532-7561. doi: 10.1021/acs.chemrev.1c00432. Epub 2021 Oct 11.
8
Fenton-Chemistry-Based Oxidative Modification of Proteins Reflects Their Conformation.
Int J Mol Sci. 2021 Sep 14;22(18):9927. doi: 10.3390/ijms22189927.
9
Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems.
Chem Rev. 2022 Apr 27;122(8):7562-7623. doi: 10.1021/acs.chemrev.1c00279. Epub 2021 Sep 7.
10
Protein-Small Molecule Interactions in Native Mass Spectrometry.
Chem Rev. 2022 Apr 27;122(8):7327-7385. doi: 10.1021/acs.chemrev.1c00293. Epub 2021 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验