Suppr超能文献

SNARE囊泡融合机制的系统发育为深入了解真菌分泌途径的保守性提供了线索。

Phylogeny of the SNARE vesicle fusion machinery yields insights into the conservation of the secretory pathway in fungi.

作者信息

Kienle Nickias, Kloepper Tobias H, Fasshauer Dirk

机构信息

Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

BMC Evol Biol. 2009 Jan 23;9:19. doi: 10.1186/1471-2148-9-19.

Abstract

BACKGROUND

In eukaryotic cells, directional transport between different compartments of the endomembrane system is mediated by vesicles that bud from a donor organelle and then fuse with an acceptor organelle. A family of integral membrane proteins, termed soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, constitute the key machineries of these different membrane fusion events. Over the past 30 years, the yeast Saccharomyces cerevisiae has served as a powerful model organism for studying the organization of the secretory and endocytic pathways, and a few years ago, its entire set of SNAREs was compiled.

RESULTS

Here, we make use of the increasing amount of genomic data to investigate the history of the SNARE family during fungi evolution. Moreover, since different SNARE family members are thought to demarcate different organelles and vesicles, this approach allowed us to compare the organization of the endomembrane systems of yeast and animal cells. Our data corroborate the notion that fungi generally encompass a relatively simple set of SNARE proteins, mostly comprising the SNAREs of the proto-eukaryotic cell. However, all fungi contain a novel soluble SNARE protein, Vam7, which carries an N-terminal PX-domain that acts as a phosphoinositide binding module. In addition, the points in fungal evolution, at which lineage-specific duplications and diversifications occurred, could be determined. For instance, the endosomal syntaxins Pep12 and Vam3 arose from a gene duplication that occurred within the Saccharomycotina clade.

CONCLUSION

Although the SNARE repertoire of baker's yeast is highly conserved, our analysis reveals that it is more deviated than the ones of basal fungi. This highlights that the trafficking pathways of baker's yeast are not only different to those in animal cells but also are somewhat different to those of many other fungi.

摘要

背景

在真核细胞中,内膜系统不同区室之间的定向运输由从供体细胞器出芽然后与受体细胞器融合的囊泡介导。一类称为可溶性N - 乙基马来酰亚胺敏感因子附着受体(SNARE)蛋白的整合膜蛋白构成了这些不同膜融合事件的关键机制。在过去30年中,酿酒酵母一直是研究分泌和内吞途径组织的强大模式生物,几年前,其整套SNARE蛋白已被整理出来。

结果

在这里,我们利用不断增加的基因组数据来研究真菌进化过程中SNARE家族的历史。此外,由于不同的SNARE家族成员被认为划分不同的细胞器和囊泡,这种方法使我们能够比较酵母和动物细胞内膜系统的组织。我们的数据证实了真菌通常包含相对简单的一组SNARE蛋白的观点,这些蛋白大多由原核细胞的SNARE组成。然而,所有真菌都含有一种新型可溶性SNARE蛋白Vam7,它带有一个作为磷酸肌醇结合模块的N端PX结构域。此外,还可以确定真菌进化过程中发生谱系特异性复制和多样化的时间点。例如,内体 syntaxins Pep12和Vam3起源于酵母亚门内发生的基因复制。

结论

虽然面包酵母的SNARE库高度保守,但我们的分析表明它比基础真菌的SNARE库更具偏差。这突出表明面包酵母的运输途径不仅与动物细胞不同,而且与许多其他真菌的运输途径也有所不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8653/2639358/8b12879c3a3d/1471-2148-9-19-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验