Suppr超能文献

用归一化希尔微分方程对心脏β-肾上腺素能信号传导进行建模:与生化模型的比较。

Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model.

作者信息

Kraeutler Matthew J, Soltis Anthony R, Saucerman Jeffrey J

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.

出版信息

BMC Syst Biol. 2010 Nov 18;4:157. doi: 10.1186/1752-0509-4-157.

Abstract

BACKGROUND

New approaches are needed for large-scale predictive modeling of cellular signaling networks. While mass action and enzyme kinetic approaches require extensive biochemical data, current logic-based approaches are used primarily for qualitative predictions and have lacked direct quantitative comparison with biochemical models.

RESULTS

We developed a logic-based differential equation modeling approach for cell signaling networks based on normalized Hill activation/inhibition functions controlled by logical AND and OR operators to characterize signaling crosstalk. Using this approach, we modeled the cardiac β1-adrenergic signaling network, including 36 reactions and 25 species. Direct comparison of this model to an extensively characterized and validated biochemical model of the same network revealed that the new model gave reasonably accurate predictions of key network properties, even with default parameters. Normalized Hill functions improved quantitative predictions of global functional relationships compared with prior logic-based approaches. Comprehensive sensitivity analysis revealed the significant role of PKA negative feedback on upstream signaling and the importance of phosphodiesterases as key negative regulators of the network. The model was then extended to incorporate recently identified protein interaction data involving integrin-mediated mechanotransduction.

CONCLUSIONS

The normalized-Hill differential equation modeling approach allows quantitative prediction of network functional relationships and dynamics, even in systems with limited biochemical data.

摘要

背景

细胞信号网络的大规模预测建模需要新的方法。虽然质量作用和酶动力学方法需要大量的生化数据,但目前基于逻辑的方法主要用于定性预测,并且缺乏与生化模型的直接定量比较。

结果

我们基于由逻辑与和或运算符控制的归一化希尔激活/抑制函数,开发了一种用于细胞信号网络的基于逻辑的微分方程建模方法,以表征信号串扰。使用这种方法,我们对心脏β1-肾上腺素能信号网络进行了建模,包括36个反应和25种物质。将该模型与同一网络的一个经过广泛表征和验证的生化模型进行直接比较,结果表明,即使使用默认参数,新模型也能对关键网络特性给出合理准确的预测。与先前基于逻辑的方法相比,归一化希尔函数改善了对全局功能关系的定量预测。全面的敏感性分析揭示了蛋白激酶A负反馈对上游信号的重要作用以及磷酸二酯酶作为网络关键负调节因子的重要性。然后,该模型被扩展以纳入最近确定的涉及整合素介导的机械转导的蛋白质相互作用数据。

结论

归一化希尔微分方程建模方法即使在生化数据有限的系统中也能对网络功能关系和动态进行定量预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a555/2993667/63234a1b42ea/1752-0509-4-157-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验