Suppr超能文献

器官打印:作为构建模块的组织球体

Organ printing: tissue spheroids as building blocks.

作者信息

Mironov Vladimir, Visconti Richard P, Kasyanov Vladimir, Forgacs Gabor, Drake Christopher J, Markwald Roger R

机构信息

Bioprinting Research Center, Cardiovascular Developmental Biology Center, Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.

出版信息

Biomaterials. 2009 Apr;30(12):2164-74. doi: 10.1016/j.biomaterials.2008.12.084. Epub 2009 Jan 26.

Abstract

Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks. The microtissues and tissue spheroids are living materials with certain measurable, evolving and potentially controllable composition, material and biological properties. Closely placed tissue spheroids undergo tissue fusion - a process that represents a fundamental biological and biophysical principle of developmental biology-inspired directed tissue self-assembly. It is possible to engineer small segments of an intraorgan branched vascular tree by using solid and lumenized vascular tissue spheroids. Organ printing could dramatically enhance and transform the field of tissue engineering by enabling large-scale industrial robotic biofabrication of living human organ constructs with "built-in" perfusable intraorgan branched vascular tree. Thus, organ printing is a new emerging enabling technology paradigm which represents a developmental biology-inspired alternative to classic biodegradable solid scaffold-based approaches in tissue engineering.

摘要

器官打印可定义为以组织球状体为构建单元,通过机器人进行逐层添加式生物制造,构建三维功能性活体大组织和器官结构。微组织和组织球状体是具有一定可测量、不断演变且可能可控的组成、材料及生物学特性的活体材料。紧密排列的组织球状体会发生组织融合,这一过程体现了发育生物学启发下的定向组织自组装的基本生物学和生物物理原理。利用实心和有腔的血管组织球状体,能够构建器官内分支血管树的小片段。器官打印通过实现具有“内置”可灌注器官内分支血管树的活体人体器官结构的大规模工业机器人生物制造,有望极大地提升和变革组织工程领域。因此,器官打印是一种新兴的使能技术范式,它代表了一种受发育生物学启发的替代方法,可替代组织工程中基于经典可生物降解固体支架的方法。

相似文献

1
Organ printing: tissue spheroids as building blocks.
Biomaterials. 2009 Apr;30(12):2164-74. doi: 10.1016/j.biomaterials.2008.12.084. Epub 2009 Jan 26.
2
Bioprinting Using Organ Building Blocks: Spheroids, Organoids, and Assembloids.
Tissue Eng Part A. 2024 Jul;30(13-14):377-386. doi: 10.1089/ten.TEA.2023.0198. Epub 2024 Jan 25.
3
Towards organ printing: engineering an intra-organ branched vascular tree.
Expert Opin Biol Ther. 2010 Mar;10(3):409-20. doi: 10.1517/14712590903563352.
4
Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation.
J Tissue Eng Regen Med. 2010 Dec;4(8):659-64. doi: 10.1002/term.291.
5
Using Sacrificial Cell Spheroids for the Bioprinting of Perfusable 3D Tissue and Organ Constructs: A Computational Study.
Comput Math Methods Med. 2019 May 20;2019:7853586. doi: 10.1155/2019/7853586. eCollection 2019.
6
Organ printing: from bioprinter to organ biofabrication line.
Curr Opin Biotechnol. 2011 Oct;22(5):667-73. doi: 10.1016/j.copbio.2011.02.006. Epub 2011 Mar 16.
7
Thermoreversible hydrogel for in situ generation and release of HepG2 spheroids.
Biomacromolecules. 2011 Mar 14;12(3):578-84. doi: 10.1021/bm101187b. Epub 2011 Jan 19.
10
Biofabrication of a Functional Tubular Construct from Tissue Spheroids Using Magnetoacoustic Levitational Directed Assembly.
Adv Healthc Mater. 2020 Dec;9(24):e2000721. doi: 10.1002/adhm.202000721. Epub 2020 Aug 18.

引用本文的文献

1
Spheroid Cell Aggregation Enhanced by Enzyme-Free Ultrasound-Detached Cells.
Adv Biol (Weinh). 2025 Aug;9(8):e00092. doi: 10.1002/adbi.202500092. Epub 2025 Aug 4.
2
In Situ Bioprinting Enhances Bone Regeneration in a Live Animal Model with Craniofacial Defect.
ACS Biomater Sci Eng. 2025 Aug 11;11(8):5027-5037. doi: 10.1021/acsbiomaterials.5c00780. Epub 2025 Jul 24.
3
Improving three-dimensional human pluripotent cell culture efficiency via surface molecule coating.
Front Chem Eng. 2022;4. doi: 10.3389/fceng.2022.1031395. Epub 2022 Oct 20.
4
The Future of Alopecia Treatment: Plant Extracts, Nanocarriers, and 3D Bioprinting in Focus.
Pharmaceutics. 2025 Apr 29;17(5):584. doi: 10.3390/pharmaceutics17050584.
5
Hydrogels in Simulated Microgravity: Thermodynamics at Play.
Gels. 2025 May 3;11(5):342. doi: 10.3390/gels11050342.
6
Three-Dimensional Bioprinting for Intervertebral Disc Regeneration.
J Funct Biomater. 2025 Mar 14;16(3):105. doi: 10.3390/jfb16030105.
7
Spheroids from Epithelial and Mesenchymal Cell Phenotypes as Building Blocks in Bioprinting (Review).
Sovrem Tekhnologii Med. 2025;17(1):133-154. doi: 10.17691/stm2025.17.1.11. Epub 2025 Feb 28.
8
Redesigning FDM Platforms for Bio-Printing Applications.
Micromachines (Basel). 2025 Feb 16;16(2):226. doi: 10.3390/mi16020226.
9
Implantable Dental Barrier Membranes as Regenerative Medicine in Dentistry: A Comprehensive Review.
Tissue Eng Regen Med. 2025 Feb 24. doi: 10.1007/s13770-025-00704-1.

本文引用的文献

1
Magnetic reconstruction of three-dimensional tissues from multicellular spheroids.
Tissue Eng Part C Methods. 2008 Sep;14(3):197-205. doi: 10.1089/ten.tec.2008.0061.
2
Relating cell and tissue mechanics: implications and applications.
Dev Dyn. 2008 Sep;237(9):2438-49. doi: 10.1002/dvdy.21684.
3
Cytoskeletal-mediated tension modulates the directed self-assembly of microtissues.
Tissue Eng Part A. 2008 Dec;14(12):1989-97. doi: 10.1089/ten.tea.2007.0320.
4
Vascularization in tissue engineering.
Trends Biotechnol. 2008 Aug;26(8):434-41. doi: 10.1016/j.tibtech.2008.04.009. Epub 2008 Jun 26.
5
Recent advances in three-dimensional multicellular spheroid culture for biomedical research.
Biotechnol J. 2008 Oct;3(9-10):1172-84. doi: 10.1002/biot.200700228.
6
Drug testing on 3D in vitro tissues trapped on a microcavity chip.
Lab Chip. 2008 Jun;8(6):879-84. doi: 10.1039/b800394g. Epub 2008 Apr 11.
7
Gelation of particles with short-range attraction.
Nature. 2008 May 22;453(7194):499-503. doi: 10.1038/nature06931.
8
Engineering the microcirculation.
Tissue Eng Part B Rev. 2008 Mar;14(1):87-103. doi: 10.1089/teb.2007.0299.
9
On the mechanisms of biocompatibility.
Biomaterials. 2008 Jul;29(20):2941-53. doi: 10.1016/j.biomaterials.2008.04.023. Epub 2008 Apr 28.
10
Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication.
Trends Biotechnol. 2008 Jun;26(6):338-44. doi: 10.1016/j.tibtech.2008.03.001. Epub 2008 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验