Suppr超能文献

基于组织球体融合的体外筛选分析方法用于组织成熟度分析。

Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation.

机构信息

Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.

出版信息

J Tissue Eng Regen Med. 2010 Dec;4(8):659-64. doi: 10.1002/term.291.

Abstract

Organ printing or computer-aided robotic layer-by-layer additive biofabrication of thick three-dimensional (3D) living tissue constructs employing self-assembling tissue spheroids is a rapidly evolving alternative to classic solid scaffold-based approaches in tissue engineering. However, the absence of effective methods of accelerated tissue maturation immediately after bioprinting is the main technological imperative and potential impediment for further progress in the development of this emerging organ printing technology. Identification of the optimal combination of factors and conditions that accelerate tissue maturation ('maturogenic' factors) is an essential and necessary endeavour. Screening of maturogenic factors would be most efficiently accomplished using high-throughput quantitative in vitro tissue maturation assays. We have recently reviewed the formation of solid scaffold-free tissue constructs through the fusion of bioprinted tissue spheroids that have measurable material properties. We hypothesize that the fusion kinetics of these tissue spheroids will provide an efficacious in vitro assay of the level of tissue maturation. We report here the results of experimental testing of two simple quantitative tissue spheroid fusion-based in vitro high-throughput screening assays of tissue maturation: (a) a tissue spheroid envelopment assay; and (b) a tissue spheroid fusion kinetics assay.

摘要

器官打印或计算机辅助机器人逐层添加式生物制造采用自组装组织球体的厚三维(3D)活体组织构建体是组织工程中替代经典固体支架方法的一种快速发展的替代方法。然而,生物打印后组织快速成熟的有效方法的缺乏是该新兴器官打印技术发展的主要技术要求和潜在障碍。鉴定加速组织成熟的最佳因素和条件组合(“成熟诱导”因素)是一项必要的努力。成熟诱导因素的筛选最有效地通过高通量定量体外组织成熟测定来完成。我们最近回顾了通过融合具有可测量材料特性的生物打印组织球体来形成无固体支架组织构建体的过程。我们假设这些组织球体的融合动力学将提供组织成熟水平的有效体外测定。我们在这里报告了两种简单的基于组织球体融合的体外高通量组织成熟筛选测定的实验测试结果:(a)组织球体包被测定;和(b)组织球体融合动力学测定。

相似文献

1
Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation.
J Tissue Eng Regen Med. 2010 Dec;4(8):659-64. doi: 10.1002/term.291.
2
Organ printing: tissue spheroids as building blocks.
Biomaterials. 2009 Apr;30(12):2164-74. doi: 10.1016/j.biomaterials.2008.12.084. Epub 2009 Jan 26.
3
Bioprinting Using Organ Building Blocks: Spheroids, Organoids, and Assembloids.
Tissue Eng Part A. 2024 Jul;30(13-14):377-386. doi: 10.1089/ten.TEA.2023.0198. Epub 2024 Jan 25.
4
Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting.
Methods Mol Biol. 2020;2140:183-197. doi: 10.1007/978-1-0716-0520-2_12.
6
Multiparametric Analysis of Tissue Spheroids Fabricated from Different Types of Cells.
Biotechnol J. 2020 May;15(5):e1900217. doi: 10.1002/biot.201900217. Epub 2020 Feb 9.
7
Aspiration-assisted bioprinting for precise positioning of biologics.
Sci Adv. 2020 Mar 6;6(10):eaaw5111. doi: 10.1126/sciadv.aaw5111. eCollection 2020 Mar.
8
Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers.
Biomaterials. 2019 Mar;197:194-206. doi: 10.1016/j.biomaterials.2018.12.028. Epub 2019 Jan 8.
9
Cryopreservation method for spheroids and fabrication of scaffold-free tubular constructs.
PLoS One. 2020 Apr 2;15(4):e0230428. doi: 10.1371/journal.pone.0230428. eCollection 2020.
10
Strategies for 3D bioprinting of spheroids: A comprehensive review.
Biomaterials. 2022 Dec;291:121881. doi: 10.1016/j.biomaterials.2022.121881. Epub 2022 Oct 28.

引用本文的文献

1
Improving three-dimensional human pluripotent cell culture efficiency via surface molecule coating.
Front Chem Eng. 2022;4. doi: 10.3389/fceng.2022.1031395. Epub 2022 Oct 20.
2
Recapitulating the Drifting and Fusion of Two-Generation Spheroids on Concave Agarose Microwells.
Int J Mol Sci. 2023 Jul 26;24(15):11967. doi: 10.3390/ijms241511967.
3
Cryopreservation of Liver-Cell Spheroids with Macromolecular Cryoprotectants.
ACS Appl Mater Interfaces. 2023 Jan 18;15(2):2630-2638. doi: 10.1021/acsami.2c18288. Epub 2023 Jan 9.
4
Fabricating 3-dimensional human brown adipose microtissues for transplantation studies.
Bioact Mater. 2022 Oct 27;22:518-534. doi: 10.1016/j.bioactmat.2022.10.022. eCollection 2023 Apr.
5
A platform for automated and label-free monitoring of morphological features and kinetics of spheroid fusion.
Front Bioeng Biotechnol. 2022 Aug 26;10:946992. doi: 10.3389/fbioe.2022.946992. eCollection 2022.
6
Biomanufacturing human tissues via organ building blocks.
Cell Stem Cell. 2022 May 5;29(5):667-677. doi: 10.1016/j.stem.2022.04.012.
7
Theoretical and Experimental Investigation of Alginate Microtube Extrusion for Cell Culture Applications.
Biochem Eng J. 2022 Jan;177. doi: 10.1016/j.bej.2021.108236. Epub 2021 Oct 14.
8
Probing Multicellular Tissue Fusion of Cocultured Spheroids-A 3D-Bioassembly Model.
Adv Sci (Weinh). 2021 Nov;8(22):e2103320. doi: 10.1002/advs.202103320. Epub 2021 Oct 10.
9
Modeling Liver Organogenesis by Recreating Three-Dimensional Collective Cell Migration: A Role for TGFβ Pathway.
Front Bioeng Biotechnol. 2021 Jun 15;9:621286. doi: 10.3389/fbioe.2021.621286. eCollection 2021.
10
Upscaling of pneumatic membrane valves for the integration of 3D cell cultures on chip.
Lab Chip. 2021 Aug 7;21(15):2986-2996. doi: 10.1039/d1lc00194a. Epub 2021 Jun 18.

本文引用的文献

1
Organ printing: tissue spheroids as building blocks.
Biomaterials. 2009 Apr;30(12):2164-74. doi: 10.1016/j.biomaterials.2008.12.084. Epub 2009 Jan 26.
2
Hypoxia induces near-native mechanical properties in engineered heart valve tissue.
Circulation. 2009 Jan 20;119(2):290-7. doi: 10.1161/CIRCULATIONAHA.107.749853. Epub 2008 Dec 31.
3
Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery.
Biomaterials. 2009 Mar;30(8):1542-50. doi: 10.1016/j.biomaterials.2008.11.011. Epub 2008 Dec 25.
4
Controlling cell position in complex heterotypic 3D microtissues by tissue fusion.
Biotechnol Bioeng. 2009 Mar 1;102(4):1231-41. doi: 10.1002/bit.22162.
5
Relating cell and tissue mechanics: implications and applications.
Dev Dyn. 2008 Sep;237(9):2438-49. doi: 10.1002/dvdy.21684.
6
Tissue engineering by self-assembly of cells printed into topologically defined structures.
Tissue Eng Part A. 2008 Mar;14(3):413-21. doi: 10.1089/tea.2007.0173.
7
Developmental biology and tissue engineering.
Birth Defects Res C Embryo Today. 2007 Dec;81(4):320-8. doi: 10.1002/bdrc.20109.
8
Organ printing: promises and challenges.
Regen Med. 2008 Jan;3(1):93-103. doi: 10.2217/17460751.3.1.93.
9
Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling.
Circ Res. 2007 Aug 3;101(3):313-21. doi: 10.1161/CIRCRESAHA.107.149047. Epub 2007 Jun 14.
10
In vitro models of TGF-beta-induced fibrosis suitable for high-throughput screening of antifibrotic agents.
Am J Physiol Renal Physiol. 2007 Aug;293(2):F631-40. doi: 10.1152/ajprenal.00379.2006. Epub 2007 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验