Suppr超能文献

根癌土壤杆菌磷脂N-甲基转移酶PmtA酶特性的体外表征

In vitro characterization of the enzyme properties of the phospholipid N-methyltransferase PmtA from Agrobacterium tumefaciens.

作者信息

Aktas Meriyem, Narberhaus Franz

机构信息

Ruhr-University, Bochum, Germany.

出版信息

J Bacteriol. 2009 Apr;191(7):2033-41. doi: 10.1128/JB.01591-08. Epub 2009 Jan 30.

Abstract

Agrobacterium tumefaciens requires phosphatidylcholine (PC) in its membranes for plant infection. The phospholipid N-methyltransferase PmtA catalyzes all three transmethylation reactions of phosphatidylethanolamine (PE) to PC via the intermediates monomethylphosphatidylethanolamine (MMPE) and dimethylphosphatidylethanolamine (DMPE). The enzyme uses S-adenosylmethionine (SAM) as the methyl donor, converting it to S-adenosylhomocysteine (SAH). Little is known about the activity of bacterial Pmt enzymes, since PC biosynthesis in prokaryotes is rare. In this article, we present the purification and in vitro characterization of A. tumefaciens PmtA, which is a monomeric protein. It binds to PE, the intermediates MMPE and DMPE, the end product PC, and phosphatidylglycerol (PG) and phosphatidylinositol. Binding of the phospholipid substrates precedes binding of SAM. We used a coupled in vitro assay system to demonstrate the enzymatic activity of PmtA and to show that PmtA is inhibited by the end products PC and SAH and the antibiotic sinefungin. The presence of PG stimulates PmtA activity. Our study provides insights into the catalysis and control of a bacterial phospholipid N-methyltransferase.

摘要

根癌农杆菌在其细胞膜中需要磷脂酰胆碱(PC)来感染植物。磷脂N-甲基转移酶PmtA催化磷脂酰乙醇胺(PE)通过中间体单甲基磷脂酰乙醇胺(MMPE)和二甲基磷脂酰乙醇胺(DMPE)向PC的所有三个甲基化反应。该酶使用S-腺苷甲硫氨酸(SAM)作为甲基供体,将其转化为S-腺苷高半胱氨酸(SAH)。由于原核生物中PC生物合成很少见,关于细菌Pmt酶的活性知之甚少。在本文中,我们展示了根癌农杆菌PmtA的纯化和体外特性,它是一种单体蛋白。它与PE、中间体MMPE和DMPE、终产物PC以及磷脂酰甘油(PG)和磷脂酰肌醇结合。磷脂底物的结合先于SAM的结合。我们使用耦合体外测定系统来证明PmtA的酶活性,并表明PmtA受到终产物PC和SAH以及抗生素杀稻瘟菌素的抑制。PG的存在刺激PmtA活性。我们的研究为细菌磷脂N-甲基转移酶的催化和调控提供了见解。

相似文献

2
S-adenosylmethionine-binding properties of a bacterial phospholipid N-methyltransferase.
J Bacteriol. 2011 Jul;193(14):3473-81. doi: 10.1128/JB.01539-10. Epub 2011 May 20.
3
Membrane Remodeling by a Bacterial Phospholipid-Methylating Enzyme.
mBio. 2017 Feb 14;8(1):e02082-16. doi: 10.1128/mBio.02082-16.
4
Membrane-binding mechanism of a bacterial phospholipid N-methyltransferase.
Mol Microbiol. 2015 Jan;95(2):313-31. doi: 10.1111/mmi.12870. Epub 2014 Dec 19.
5
Dissection of membrane-binding and -remodeling regions in two classes of bacterial phospholipid N-methyltransferases.
Biochim Biophys Acta Biomembr. 2017 Dec;1859(12):2279-2288. doi: 10.1016/j.bbamem.2017.09.013. Epub 2017 Sep 11.
6
8
Global consequences of phosphatidylcholine reduction in Bradyrhizobium japonicum.
Mol Genet Genomics. 2008 Jul;280(1):59-72. doi: 10.1007/s00438-008-0345-2. Epub 2008 Apr 30.
9
Membrane lipids in Agrobacterium tumefaciens: biosynthetic pathways and importance for pathogenesis.
Front Plant Sci. 2014 Mar 26;5:109. doi: 10.3389/fpls.2014.00109. eCollection 2014.

引用本文的文献

1
Structural basis for phosphatidylcholine synthesis by bacterial phospholipid N-methyltransferases.
J Biol Chem. 2025 May;301(5):108507. doi: 10.1016/j.jbc.2025.108507. Epub 2025 Apr 11.
2
3
Overexpression of diglucosyldiacylglycerol synthase leads to daptomycin resistance in .
J Bacteriol. 2024 Oct 24;206(10):e0030724. doi: 10.1128/jb.00307-24. Epub 2024 Sep 5.
4
Three separate pathways in maintain phosphatidylcholine biosynthesis, which is required for symbiotic nitrogen fixation with clover.
Appl Environ Microbiol. 2024 Sep 18;90(9):e0059024. doi: 10.1128/aem.00590-24. Epub 2024 Aug 9.
5
Recombinant and endogenous ways to produce methylated phospholipids in Escherichia coli.
Appl Microbiol Biotechnol. 2021 Dec;105(23):8837-8851. doi: 10.1007/s00253-021-11654-8. Epub 2021 Oct 28.
7
Genetically controlled membrane synthesis in liposomes.
Nat Commun. 2020 Aug 28;11(1):4317. doi: 10.1038/s41467-020-17863-5.
8
Membrane Remodeling by a Bacterial Phospholipid-Methylating Enzyme.
mBio. 2017 Feb 14;8(1):e02082-16. doi: 10.1128/mBio.02082-16.
9
In Vitro Assay to Measure Phosphatidylethanolamine Methyltransferase Activity.
J Vis Exp. 2016 Jan 5(107):53302. doi: 10.3791/53302.
10
Membrane lipids in Agrobacterium tumefaciens: biosynthetic pathways and importance for pathogenesis.
Front Plant Sci. 2014 Mar 26;5:109. doi: 10.3389/fpls.2014.00109. eCollection 2014.

本文引用的文献

1
Expression and physiological relevance of Agrobacterium tumefaciens phosphatidylcholine biosynthesis genes.
J Bacteriol. 2009 Jan;191(1):365-74. doi: 10.1128/JB.01183-08. Epub 2008 Oct 31.
2
Global consequences of phosphatidylcholine reduction in Bradyrhizobium japonicum.
Mol Genet Genomics. 2008 Jul;280(1):59-72. doi: 10.1007/s00438-008-0345-2. Epub 2008 Apr 30.
4
Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants.
Cell Microbiol. 2008 Feb;10(2):514-28. doi: 10.1111/j.1462-5822.2007.01066.x. Epub 2007 Nov 2.
5
Hepatic phosphatidylethanolamine N-methyltransferase, unexpected roles in animal biochemistry and physiology.
J Biol Chem. 2007 Nov 16;282(46):33237-41. doi: 10.1074/jbc.R700028200. Epub 2007 Sep 19.
6
Virulence of Agrobacterium tumefaciens requires phosphatidylcholine in the bacterial membrane.
Mol Microbiol. 2006 Nov;62(3):906-15. doi: 10.1111/j.1365-2958.2006.05425.x. Epub 2006 Sep 29.
8
Brucella abortus synthesizes phosphatidylcholine from choline provided by the host.
J Bacteriol. 2006 Mar;188(5):1929-34. doi: 10.1128/JB.188.5.1929-1934.2006.
9
An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases.
Anal Biochem. 2006 Mar 15;350(2):249-55. doi: 10.1016/j.ab.2006.01.004. Epub 2006 Feb 7.
10
Localization-independent regulation of homocysteine secretion by phosphatidylethanolamine N-methyltransferase.
J Biol Chem. 2005 Jul 22;280(29):27339-44. doi: 10.1074/jbc.M504658200. Epub 2005 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验