Suppr超能文献

细菌磷脂 N-甲基转移酶的 S-腺苷甲硫氨酸结合特性。

S-adenosylmethionine-binding properties of a bacterial phospholipid N-methyltransferase.

机构信息

Ruhr-Universität Bochum, Bochum, Germany.

出版信息

J Bacteriol. 2011 Jul;193(14):3473-81. doi: 10.1128/JB.01539-10. Epub 2011 May 20.

Abstract

The presence of the membrane lipid phosphatidylcholine (PC) in the bacterial membrane is critically important for many host-microbe interactions. The phospholipid N-methyltransferase PmtA from the plant pathogen Agrobacterium tumefaciens catalyzes the formation of PC by a three-step methylation of phosphatidylethanolamine via monomethylphosphatidylethanolamine and dimethylphosphatidylethanolamine. The methyl group is provided by S-adenosylmethionine (SAM), which is converted to S-adenosylhomocysteine (SAH) during transmethylation. Despite the biological importance of bacterial phospholipid N-methyltransferases, little is known about amino acids critical for binding to SAM or phospholipids and catalysis. Alanine substitutions in the predicted SAM-binding residues E58, G60, G62, and E84 in A. tumefaciens PmtA dramatically reduced SAM-binding and enzyme activity. Homology modeling of PmtA satisfactorily explained the mutational results. The enzyme is predicted to exhibit a consensus topology of the SAM-binding fold consistent with cofactor interaction as seen with most structurally characterized SAM-methyltransferases. Nuclear magnetic resonance (NMR) titration experiments and (14)C-SAM-binding studies revealed binding constants for SAM and SAH in the low micromolar range. Our study provides first insights into structural features and SAM binding of a bacterial phospholipid N-methyltransferase.

摘要

膜脂磷脂酰胆碱 (PC) 的存在对于许多宿主-微生物相互作用至关重要。植物病原体根瘤农杆菌中的磷脂 N-甲基转移酶 PmtA 通过磷脂酰乙醇胺经单甲基磷脂酰乙醇胺和二甲基磷脂酰乙醇胺的三步甲基化来催化 PC 的形成。甲基供体为 S-腺苷甲硫氨酸 (SAM),在转甲基过程中转化为 S-腺苷同型半胱氨酸 (SAH)。尽管细菌磷脂 N-甲基转移酶具有重要的生物学意义,但对于与 SAM 或磷脂结合和催化至关重要的氨基酸知之甚少。在根瘤农杆菌 PmtA 中预测的 SAM 结合残基 E58、G60、G62 和 E84 中的丙氨酸取代极大地降低了 SAM 结合和酶活性。PmtA 的同源建模令人满意地解释了突变结果。该酶预计表现出与大多数结构特征化的 SAM-甲基转移酶一致的共因子相互作用的 SAM 结合折叠的共识拓扑。核磁共振 (NMR) 滴定实验和 (14)C-SAM 结合研究揭示了 SAM 和 SAH 的结合常数处于低微摩尔范围内。我们的研究首次提供了有关细菌磷脂 N-甲基转移酶的结构特征和 SAM 结合的见解。

相似文献

1
S-adenosylmethionine-binding properties of a bacterial phospholipid N-methyltransferase.
J Bacteriol. 2011 Jul;193(14):3473-81. doi: 10.1128/JB.01539-10. Epub 2011 May 20.
3
Membrane Remodeling by a Bacterial Phospholipid-Methylating Enzyme.
mBio. 2017 Feb 14;8(1):e02082-16. doi: 10.1128/mBio.02082-16.
4
Membrane-binding mechanism of a bacterial phospholipid N-methyltransferase.
Mol Microbiol. 2015 Jan;95(2):313-31. doi: 10.1111/mmi.12870. Epub 2014 Dec 19.
5
Dissection of membrane-binding and -remodeling regions in two classes of bacterial phospholipid N-methyltransferases.
Biochim Biophys Acta Biomembr. 2017 Dec;1859(12):2279-2288. doi: 10.1016/j.bbamem.2017.09.013. Epub 2017 Sep 11.
6
The topology of the ER-resident phospholipid methyltransferase Opi3 of is consistent with in catalysis.
J Biol Chem. 2020 Feb 21;295(8):2473-2482. doi: 10.1074/jbc.RA119.011102. Epub 2020 Jan 13.
7
8
A Metabolic Function for Phospholipid and Histone Methylation.
Mol Cell. 2017 Apr 20;66(2):180-193.e8. doi: 10.1016/j.molcel.2017.02.026. Epub 2017 Mar 30.
9
Phosphatidylethanolamine N-methyltransferase activity in isolated rod outer segments from bovine retina.
Exp Eye Res. 1995 Jun;60(6):631-43. doi: 10.1016/s0014-4835(05)80005-3.

引用本文的文献

1
Development of a multi-epitope vaccine from outer membrane proteins and identification of novel drug targets against : an approach.
Front Immunol. 2025 Apr 3;16:1479862. doi: 10.3389/fimmu.2025.1479862. eCollection 2025.
2
Structural basis for phosphatidylcholine synthesis by bacterial phospholipid N-methyltransferases.
J Biol Chem. 2025 May;301(5):108507. doi: 10.1016/j.jbc.2025.108507. Epub 2025 Apr 11.
4
5
16S rRNA Methyltransferases as Novel Drug Targets Against Tuberculosis.
Protein J. 2022 Feb;41(1):97-130. doi: 10.1007/s10930-021-10029-2. Epub 2022 Feb 3.
6
Flagellin lysine methyltransferase FliB catalyzes a [4Fe-4S] mediated methyl transfer reaction.
PLoS Pathog. 2021 Nov 17;17(11):e1010052. doi: 10.1371/journal.ppat.1010052. eCollection 2021 Nov.
9
SAMbinder: A Web Server for Predicting S-Adenosyl-L-Methionine Binding Residues of a Protein From Its Amino Acid Sequence.
Front Pharmacol. 2020 Jan 30;10:1690. doi: 10.3389/fphar.2019.01690. eCollection 2019.
10
Molecular Basis for Autocatalytic Backbone N-Methylation in RiPP Natural Product Biosynthesis.
ACS Chem Biol. 2018 Oct 19;13(10):2989-2999. doi: 10.1021/acschembio.8b00668. Epub 2018 Sep 25.

本文引用的文献

2
Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells.
Eur J Cell Biol. 2010 Dec;89(12):888-94. doi: 10.1016/j.ejcb.2010.06.013. Epub 2010 Jul 24.
3
I-TASSER: a unified platform for automated protein structure and function prediction.
Nat Protoc. 2010 Apr;5(4):725-38. doi: 10.1038/nprot.2010.5. Epub 2010 Mar 25.
4
I-TASSER: fully automated protein structure prediction in CASP8.
Proteins. 2009;77 Suppl 9(Suppl 9):100-13. doi: 10.1002/prot.22588.
5
Sequence-specific 1H, 13C, and 15N backbone assignment of the activated 21 kDa GTPase rRheb.
Biomol NMR Assign. 2007 Jul;1(1):105-8. doi: 10.1007/s12104-007-9030-3. Epub 2007 Jul 11.
6
Sequence-specific 1H, 13C, and 15N backbone assignment of the GTPase rRheb in its GDP-bound form.
Biomol NMR Assign. 2007 Jul;1(1):45-7. doi: 10.1007/s12104-007-9013-4. Epub 2007 May 22.
8
Expression and physiological relevance of Agrobacterium tumefaciens phosphatidylcholine biosynthesis genes.
J Bacteriol. 2009 Jan;191(1):365-74. doi: 10.1128/JB.01183-08. Epub 2008 Oct 31.
9
Regulation of phospholipid synthesis in yeast.
J Lipid Res. 2009 Apr;50 Suppl(Suppl):S69-73. doi: 10.1194/jlr.R800043-JLR200. Epub 2008 Oct 27.
10
Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb.
FEBS Lett. 2008 Sep 3;582(20):3005-10. doi: 10.1016/j.febslet.2008.07.057. Epub 2008 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验