Population Program, Institute of Behavioral Science, University of Colorado at Boulder, Boulder, CO 80309-0484, USA.
AIDS. 2009 Mar 13;23(5):621-9. doi: 10.1097/QAD.0b013e3283269e13.
To assess the relationship between prior knowledge of one's HIV status and the likelihood to refuse HIV testing in populations-based surveys and explore its potential for producing bias in HIV prevalence estimates.
Using longitudinal survey data from Malawi, we estimate the relationship between prior knowledge of HIV-positive status and subsequent refusal of an HIV test. We use that parameter to develop a heuristic model of refusal bias that is applied to six Demographic and Health Surveys, in which refusal by HIV status is not observed. The model only adjusts for refusal bias conditional on a completed interview.
Ecologically, HIV prevalence, prior testing rates and refusal for HIV testing are highly correlated. Malawian data further suggest that amongst individuals who know their status, HIV-positive individuals are 4.62 (95% confidence interval, 2.60-8.21) times more likely to refuse testing than HIV-negative ones. On the basis of that parameter and other inputs from the Demographic and Health Surveys, our model predicts downward bias in national HIV prevalence estimates ranging from 1.5% (95% confidence interval, 0.7-2.9) for Senegal to 13.3% (95% confidence interval, 7.2-19.6) for Malawi. In absolute terms, bias in HIV prevalence estimates is negligible for Senegal but 1.6 (95% confidence interval, 0.8-2.3) percentage points for Malawi. Downward bias is more severe in urban populations. Because refusal rates are higher in men, seroprevalence surveys also tend to overestimate the female-to-male ratio of infections.
Prior knowledge of HIV status informs decisions to participate in seroprevalence surveys. Informed refusals may produce bias in estimates of HIV prevalence and the sex ratio of infections.
评估人群为基础的调查中个体对其 HIV 状况的先验知识与拒绝 HIV 检测之间的关系,并探讨其对 HIV 流行率估计产生偏差的可能性。
我们利用马拉维的纵向调查数据,估计 HIV 阳性状态的先验知识与随后拒绝 HIV 检测之间的关系。我们使用该参数来开发一个拒绝偏差的启发式模型,该模型应用于六个人口与健康调查中,这些调查中未观察到基于 HIV 状态的拒绝情况。该模型仅根据完成的访谈来调整拒绝偏差。
从生态学角度看,HIV 流行率、先前的检测率和拒绝 HIV 检测之间高度相关。马拉维的数据进一步表明,在了解自身状况的个体中,HIV 阳性个体拒绝检测的可能性是 HIV 阴性个体的 4.62 倍(95%置信区间,2.60-8.21)。基于该参数以及人口与健康调查中的其他输入,我们的模型预测,全国 HIV 流行率估计值会出现向下偏差,范围从塞内加尔的 1.5%(95%置信区间,0.7-2.9)到马拉维的 13.3%(95%置信区间,7.2-19.6)。就绝对而言,塞内加尔的 HIV 流行率估计值偏差可以忽略不计,但马拉维的偏差为 1.6 个百分点(95%置信区间,0.8-2.3)。城市人口的偏差更为严重。由于男性的拒绝率更高,血清阳性率调查也往往会高估感染的女性与男性比例。
HIV 状况的先验知识会影响参与血清阳性率调查的决策。知情拒绝可能会对 HIV 流行率和感染的性别比例估计产生偏差。