Suppr超能文献

嗅周皮质支持对听觉对象的后天恐惧。

Perirhinal cortex supports acquired fear of auditory objects.

作者信息

Bang Sun Jung, Brown Thomas H

机构信息

Department of Psychology, Yale University, New Haven, CT 06520, USA.

出版信息

Neurobiol Learn Mem. 2009 Jul;92(1):53-62. doi: 10.1016/j.nlm.2009.01.002. Epub 2009 Jan 29.

Abstract

Damage to rat perirhinal cortex (PR) profoundly impairs fear conditioning to 22kHz ultrasonic vocalizations (USVs), but has no effect on fear conditioning to continuous tones. The most obvious difference between these two sounds is that continuous tones have no internal temporal structure, whereas USVs consist of strings of discrete calls separated by temporal discontinuities. PR was hypothesized to support the fusion or integration of discontinuous auditory segments into unitary representations or "auditory objects". This transform was suggested to be necessary for normal fear conditioning to occur. These ideas naturally assume that the effect of PR damage on auditory fear conditioning is not peculiar to 22kHz USVs. The present study directly tested these ideas by using a different set of continuous and discontinuous auditory cues. Control and PR-damaged rats were fear conditioned to a 53kHz USV, a 53kHz continuous tone, or a 53kHz discontinuous tone. The continuous and discontinuous tones matched the 53kHz USV in terms of duration, loudness, and principle frequency. The on/off pattern of the discontinuous tone matched the pattern of the individual calls of the 53kHz USV. The on/off pattern of the 50kHz USV was very different from the patterns in the 22kHz USVs that have been comparably examined. Rats with PR damage were profoundly impaired in fear conditioning to both discontinuous cues, but they were unimpaired in conditioning to the continuous cue. The implications of this temporal discontinuity effect are explored in terms of contemporary ideas about PR function.

摘要

大鼠嗅周皮质(PR)受损会严重损害对22kHz超声波发声(USV)的恐惧条件反射,但对连续音调的恐惧条件反射没有影响。这两种声音最明显的区别在于,连续音调没有内部时间结构,而USV由一系列离散的叫声组成,这些叫声之间存在时间间断。有人提出,PR支持将不连续的听觉片段融合或整合为单一表征或“听觉对象”。这种转换被认为是正常恐惧条件反射发生所必需的。这些观点自然假定,PR损伤对听觉恐惧条件反射的影响并非22kHz USV所特有。本研究通过使用另一组连续和不连续的听觉线索直接验证了这些观点。将对照组和PR受损组大鼠对53kHz USV、53kHz连续音或53kHz间断音进行恐惧条件反射训练。连续音和间断音在持续时间、响度和主频方面与53kHz USV相匹配。间断音的开关模式与53kHz USV的单个叫声模式相匹配。50kHz USV的开关模式与已进行类似研究的22kHz USV的模式非常不同。PR受损的大鼠对两种间断线索的恐惧条件反射严重受损,但对连续线索的条件反射未受影响。本文根据关于PR功能的当代观点探讨了这种时间间断效应的意义。

相似文献

1
Perirhinal cortex supports acquired fear of auditory objects.
Neurobiol Learn Mem. 2009 Jul;92(1):53-62. doi: 10.1016/j.nlm.2009.01.002. Epub 2009 Jan 29.
2
Fear conditioning to discontinuous auditory cues requires perirhinal cortical function.
Behav Neurosci. 2008 Oct;122(5):1178-85. doi: 10.1037/a0012902.
3
Single-unit responses to 22 kHz ultrasonic vocalizations in rat perirhinal cortex.
Behav Brain Res. 2007 Sep 4;182(2):327-36. doi: 10.1016/j.bbr.2007.03.009. Epub 2007 Mar 16.
4
Auditory trace fear conditioning requires perirhinal cortex.
Neurobiol Learn Mem. 2008 Oct;90(3):537-43. doi: 10.1016/j.nlm.2008.06.006. Epub 2008 Aug 21.
5
Asymmetrical stimulus generalization following differential fear conditioning.
Neurobiol Learn Mem. 2008 Jul;90(1):200-16. doi: 10.1016/j.nlm.2008.02.009. Epub 2008 Apr 22.
6
Perirhinal cortex supports delay fear conditioning to rat ultrasonic social signals.
J Neurosci. 2004 Apr 7;24(14):3610-7. doi: 10.1523/JNEUROSCI.4839-03.2004.
7
Perirhinal damage produces modality-dependent deficits in fear learning.
Neurobiol Learn Mem. 2021 May;181:107427. doi: 10.1016/j.nlm.2021.107427. Epub 2021 Mar 30.
9
Contextual, but not auditory, fear conditioning is disrupted by neurotoxic selective lesion of the basal nucleus of amygdala in rats.
Neurobiol Learn Mem. 2010 Feb;93(2):165-74. doi: 10.1016/j.nlm.2009.09.007. Epub 2009 Sep 18.

引用本文的文献

1
What is the role of the hippocampus and parahippocampal gyrus in the persistence of tinnitus?
Hum Brain Mapp. 2024 Feb 15;45(3):e26627. doi: 10.1002/hbm.26627.
2
The hearing hippocampus.
Prog Neurobiol. 2022 Nov;218:102326. doi: 10.1016/j.pneurobio.2022.102326. Epub 2022 Jul 21.
4
Reconciling the object and spatial processing views of the perirhinal cortex through task-relevant unitization.
Hippocampus. 2021 Jul;31(7):737-755. doi: 10.1002/hipo.23304. Epub 2021 Feb 1.
5
Environmental variables that ameliorate extinction learning deficits in the 129S1/SvlmJ mouse strain.
Genes Brain Behav. 2019 Sep;18(7):e12575. doi: 10.1111/gbb.12575. Epub 2019 May 7.
6
7
GABAergic inhibition gates excitatory LTP in perirhinal cortex.
Hippocampus. 2017 Dec;27(12):1217-1223. doi: 10.1002/hipo.22799. Epub 2017 Sep 26.
8
Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.
Brain Res. 2016 Jun 1;1640(Pt B):289-98. doi: 10.1016/j.brainres.2015.12.012. Epub 2015 Dec 17.
9
Characterization of auditory synaptic inputs to gerbil perirhinal cortex.
Front Neural Circuits. 2015 Aug 14;9:40. doi: 10.3389/fncir.2015.00040. eCollection 2015.
10
A simple biophysically plausible model for long time constants in single neurons.
Hippocampus. 2015 Jan;25(1):27-37. doi: 10.1002/hipo.22347. Epub 2014 Sep 25.

本文引用的文献

1
Fear conditioning to discontinuous auditory cues requires perirhinal cortical function.
Behav Neurosci. 2008 Oct;122(5):1178-85. doi: 10.1037/a0012902.
2
Perirhinal cortex supports encoding and familiarity-based recognition of novel associations.
Neuron. 2008 Aug 28;59(4):554-60. doi: 10.1016/j.neuron.2008.07.035.
3
Auditory trace fear conditioning requires perirhinal cortex.
Neurobiol Learn Mem. 2008 Oct;90(3):537-43. doi: 10.1016/j.nlm.2008.06.006. Epub 2008 Aug 21.
4
Auditory memory can be object based.
Psychon Bull Rev. 2008 Apr;15(2):409-12. doi: 10.3758/pbr.15.2.409.
5
Asymmetrical stimulus generalization following differential fear conditioning.
Neurobiol Learn Mem. 2008 Jul;90(1):200-16. doi: 10.1016/j.nlm.2008.02.009. Epub 2008 Apr 22.
6
Perirhinal cortex resolves feature ambiguity in configural object recognition and perceptual oddity tasks.
Learn Mem. 2007 Dec 17;14(12):821-32. doi: 10.1101/lm.749207. Print 2007 Dec.
7
Single-unit firing in rat perirhinal cortex caused by fear conditioning to arbitrary and ecological stimuli.
J Neurosci. 2007 Nov 7;27(45):12277-91. doi: 10.1523/JNEUROSCI.1653-07.2007.
9
Ultrasonic calls of rats as indicator variables of negative or positive states: acetylcholine-dopamine interaction and acoustic coding.
Behav Brain Res. 2007 Sep 4;182(2):261-73. doi: 10.1016/j.bbr.2007.03.004. Epub 2007 Mar 14.
10
Neurobiology of 50-kHz ultrasonic vocalizations in rats: electrode mapping, lesion, and pharmacology studies.
Behav Brain Res. 2007 Sep 4;182(2):274-83. doi: 10.1016/j.bbr.2007.03.010. Epub 2007 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验