Riboldi Gustavo P, Verli Hugo, Frazzon Jeverson
Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
BMC Biochem. 2009 Feb 2;10:3. doi: 10.1186/1471-2091-10-3.
Iron-sulfur clusters are ubiquitous and evolutionarily ancient inorganic prosthetic groups, the biosynthesis of which depends on complex protein machineries. Three distinct assembly systems involved in the maturation of cellular Fe-S proteins have been determined, designated the NIF, ISC and SUF systems. Although well described in several organisms, these machineries are poorly understood in Gram-positive bacteria. Within the Firmicutes phylum, the Enterococcus spp. genus have recently assumed importance in clinical microbiology being considered as emerging pathogens for humans, wherein Enterococcus faecalis represents the major species associated with nosocomial infections. The aim of this study was to carry out a phylogenetic analysis in Enterococcus faecalis V583 and a structural and conformational characterisation of it SufU protein.
BLAST searches of the Enterococcus genome revealed a series of genes with sequence similarity to the Escherichia coli SUF machinery of [Fe-S] cluster biosynthesis, namely sufB, sufC, sufD and SufS. In addition, the E. coli IscU ortholog SufU was found to be the scaffold protein of Enterococcus spp., containing all features considered essential for its biological activity, including conserved amino acid residues involved in substrate and/or co-factor binding (Cys50,76,138 and Asp52) and, phylogenetic analyses showed a close relationship with orthologues from other Gram-positive bacteria. Molecular dynamics for structural determinations and molecular modeling using E. faecalis SufU primary sequence protein over the PDB:1su0 crystallographic model from Streptococcus pyogenes were carried out with a subsequent 50 ns molecular dynamic trajectory. This presented a stable model, showing secondary structure modifications near the active site and conserved cysteine residues. Molecular modeling using Haemophilus influenzae IscU primary sequence over the PDB:1su0 crystal followed by a MD trajectory was performed to analyse differences in the C-terminus region of Gram-positive SufU and Gram-negative orthologous proteins, in which several modifications in secondary structure were observed.
The data describe the identification of the SUF machinery for [Fe-S] cluster biosynthesis present in the Firmicutes genome, showing conserved sufB, sufC, sufD and sufS genes and the presence of the sufU gene coding for scaffold protein, instead of sufA; neither sufE nor sufR are present. Primary sequences and structural analysis of the SufU protein demonstrated its structural-like pattern to the scaffold protein IscU nearby on the ISC machinery. E. faecalis SufU molecular modeling showed high flexibility over the active site regions, and demonstrated the existence of a specific region in Firmicutes denoting the Gram positive region (GPR), suggested as a possible candidate for interaction with other factors and/or regulators.
铁硫簇是普遍存在且在进化上古老的无机辅基,其生物合成依赖于复杂的蛋白质机制。已确定参与细胞铁硫蛋白成熟的三种不同组装系统,分别称为NIF、ISC和SUF系统。尽管在几种生物体中已有详细描述,但这些机制在革兰氏阳性细菌中却知之甚少。在厚壁菌门中,肠球菌属最近在临床微生物学中变得重要起来,被认为是人类的新兴病原体,其中粪肠球菌是与医院感染相关的主要菌种。本研究的目的是对粪肠球菌V583进行系统发育分析,并对其SufU蛋白进行结构和构象表征。
对肠球菌基因组进行BLAST搜索,发现了一系列与大肠杆菌[Fe-S]簇生物合成的SUF机制具有序列相似性的基因,即sufB、sufC、sufD和SufS。此外,发现大肠杆菌IscU的直系同源物SufU是肠球菌属的支架蛋白,包含其生物活性所必需的所有特征,包括参与底物和/或辅因子结合的保守氨基酸残基(Cys50、76、138和Asp52),并且系统发育分析表明它与其他革兰氏阳性细菌的直系同源物关系密切。使用化脓性链球菌的PDB:1su0晶体学模型对粪肠球菌SufU一级序列蛋白进行结构测定和分子建模的分子动力学,并随后进行了50 ns的分子动力学轨迹分析。这呈现了一个稳定的模型,显示了活性位点附近的二级结构修饰和保守的半胱氨酸残基。使用流感嗜血杆菌IscU一级序列在PDB:1su0晶体上进行分子建模,随后进行MD轨迹分析,以分析革兰氏阳性SufU和革兰氏阴性直系同源蛋白C端区域的差异,其中观察到二级结构的几种修饰。
数据描述了在厚壁菌门基因组中存在的用于[Fe-S]簇生物合成的SUF机制的鉴定,显示了保守的sufB、sufC、sufD和sufS基因以及编码支架蛋白的sufU基因的存在,而不是sufA;既不存在sufE也不存在sufR。SufU蛋白的一级序列和结构分析表明其结构模式与ISC机制上附近的支架蛋白IscU相似。粪肠球菌SufU分子建模显示活性位点区域具有高度灵活性,并证明在厚壁菌门中存在一个特定区域,称为革兰氏阳性区域(GPR),被认为是与其他因子和/或调节剂相互作用的可能候选者。