Suppr超能文献

一种基于通路的人类疾病及疾病关系观点。

A pathway-based view of human diseases and disease relationships.

作者信息

Li Yong, Agarwal Pankaj

机构信息

Computational Biology, GlaxoSmithKline R&D, King of Prussia, Pennsylvania, United States of America.

出版信息

PLoS One. 2009;4(2):e4346. doi: 10.1371/journal.pone.0004346. Epub 2009 Feb 4.

Abstract

It is increasingly evident that human diseases are not isolated from each other. Understanding how different diseases are related to each other based on the underlying biology could provide new insights into disease etiology, classification, and shared biological mechanisms. We have taken a computational approach to studying disease relationships through 1) systematic identification of disease associated genes by literature mining, 2) associating diseases to biological pathways where disease genes are enriched, and 3) linking diseases together based on shared pathways. We identified 4,195 candidate disease associated genes for 1028 diseases. On average, about 50% of disease associated genes of a disease are statistically mapped to pathways. We generated a disease network which consists of 591 diseases and 6,931 disease relationships. We examined properties of this network and provided examples of novel disease relationships which cannot be readily captured through simple literature search or gene overlap analysis. Our results could potentially provide insights into the design of novel, pathway-guided therapeutic interventions for diseases.

摘要

越来越明显的是,人类疾病并非相互孤立。基于潜在生物学原理理解不同疾病之间的关联,可为疾病病因、分类及共享生物学机制提供新的见解。我们采用了一种计算方法来研究疾病关系,具体包括:1)通过文献挖掘系统识别疾病相关基因;2)将疾病与疾病基因富集的生物途径相关联;3)基于共享途径将疾病联系起来。我们为1028种疾病鉴定出4195个候选疾病相关基因。平均而言,一种疾病约50%的疾病相关基因在统计学上被映射到途径中。我们构建了一个由591种疾病和6931种疾病关系组成的疾病网络。我们研究了该网络的特性,并提供了一些通过简单文献搜索或基因重叠分析无法轻易捕捉到的新型疾病关系的实例。我们的结果可能为设计针对疾病的新型、途径导向的治疗干预措施提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e81/2631151/88e6ee43dc32/pone.0004346.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验