Suppr超能文献

BPP:一个用于自动生化途径预测的平台。

BPP: a platform for automatic biochemical pathway prediction.

机构信息

School of Computing Science, University of Glasgow, 18 Lilybank Gardens, Glasgow G12 8RZ, United Kingdom.

Machine Learning Department, Mohamed bin Zayed University of Artificial Intelligence, Building 1B, Masdar City, Abu Dhabi 000000, United Arab Emirates.

出版信息

Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae355.

Abstract

A biochemical pathway consists of a series of interconnected biochemical reactions to accomplish specific life activities. The participating reactants and resultant products of a pathway, including gene fragments, proteins, and small molecules, coalesce to form a complex reaction network. Biochemical pathways play a critical role in the biochemical domain as they can reveal the flow of biochemical reactions in living organisms, making them essential for understanding life processes. Existing studies of biochemical pathway networks are mainly based on experimentation and pathway database analysis methods, which are plagued by substantial cost constraints. Inspired by the success of representation learning approaches in biomedicine, we develop the biochemical pathway prediction (BPP) platform, which is an automatic BPP platform to identify potential links or attributes within biochemical pathway networks. Our BPP platform incorporates a variety of representation learning models, including the latest hypergraph neural networks technology to model biochemical reactions in pathways. In particular, BPP contains the latest biochemical pathway-based datasets and enables the prediction of potential participants or products of biochemical reactions in biochemical pathways. Additionally, BPP is equipped with an SHAP explainer to explain the predicted results and to calculate the contributions of each participating element. We conduct extensive experiments on our collected biochemical pathway dataset to benchmark the effectiveness of all models available on BPP. Furthermore, our detailed case studies based on the chronological pattern of our dataset demonstrate the effectiveness of our platform. Our BPP web portal, source code and datasets are freely accessible at https://github.com/Glasgow-AI4BioMed/BPP.

摘要

生化途径由一系列相互关联的生化反应组成,以完成特定的生命活动。途径中的反应物和产物,包括基因片段、蛋白质和小分子,汇聚在一起形成一个复杂的反应网络。生化途径在生化领域中起着至关重要的作用,因为它们可以揭示生物体内生化反应的流动,是理解生命过程的关键。现有的生化途径网络研究主要基于实验和途径数据库分析方法,但这些方法受到成本的限制。受生物医学中表示学习方法成功的启发,我们开发了生化途径预测(BPP)平台,这是一个自动的 BPP 平台,用于识别生化途径网络中潜在的联系或属性。我们的 BPP 平台结合了多种表示学习模型,包括最新的超图神经网络技术,用于对途径中的生化反应进行建模。特别是,BPP 包含最新的基于生化途径的数据集,并能够预测生化途径中生化反应的潜在参与者或产物。此外,BPP 配备了 SHAP 解释器,用于解释预测结果,并计算每个参与元素的贡献。我们在收集的生化途径数据集上进行了广泛的实验,以基准化 BPP 上所有可用模型的有效性。此外,我们基于数据集的时间模式进行的详细案例研究证明了我们平台的有效性。我们的 BPP 门户网站、源代码和数据集可在 https://github.com/Glasgow-AI4BioMed/BPP 上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42b4/11289738/e083c3c0d423/bbae355f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验