Suppr超能文献

口服直接Xa因子抑制剂利伐沙班在大鼠、犬和人类肝脏微粒体及肝细胞中的体外代谢。

In vitro metabolism of rivaroxaban, an oral, direct factor Xa inhibitor, in liver microsomes and hepatocytes of rats, dogs, and humans.

作者信息

Lang D, Freudenberger C, Weinz C

机构信息

Bayer HealthCare AG, Global Drug Discovery, DMPK-Drug Metabolism, Building 466, Aprather Weg 18a, D-42096 Wuppertal, Germany.

出版信息

Drug Metab Dispos. 2009 May;37(5):1046-55. doi: 10.1124/dmd.108.025551. Epub 2009 Feb 5.

Abstract

The in vitro metabolism of rivaroxaban, a novel, oral, direct factor Xa inhibitor for the prevention and treatment of thromboembolic disorders, was investigated in several species, including humans. The objective of this study was to elucidate metabolite structures and identify the metabolic pathways to provide support for in vivo safety and clinical studies. [(14)C]Rivaroxaban was incubated with liver microsomes and hepatocytes of rats, dogs, and humans. The samples were analyzed by high-performance liquid chromatography-(14)C-tandem mass spectroscopy, to generate metabolite profiles and propose or confirm the structures of the metabolites formed. In vitro metabolite profiles showed no major differences between species. The main oxidative metabolic pathways identified for all species were hydroxylation at the morpholinone moiety (M-2, M-3, and M-8) and to a lesser extent at the oxazolidinone moiety (M-9). M-2 was the main metabolite in all microsomal incubations. M-1, a morpholinone ring-opened product formed by further oxidation of M-2, was the main metabolite in all hepatocyte incubations. Other pathways were amide hydrolysis at the morpholinone ring (M-7) and the chlorothiophene amide moiety (M-13 and M-15). In hepatocytes, M-13 was readily conjugated with glycine, leading to M-4. The metabolic fate of unlabeled M-15 was investigated separately. Incubations with human liver microsomes and hepatocytes showed that M-15 was first oxidized to the aldehyde intermediate M-16 and subsequently reduced to M-17 (alcohol) or oxidized to M-18 (carboxylic acid). No metabolism at the chlorothiophene moiety itself was found. Overall, rivaroxaban showed no species differences in metabolism, with different independent metabolic pathways and no formation of reactive metabolites.

摘要

利伐沙班是一种新型口服直接Xa因子抑制剂,用于预防和治疗血栓栓塞性疾病。本研究在包括人类在内的多个物种中对其体外代谢情况进行了研究。本研究的目的是阐明代谢物结构并确定代谢途径,为体内安全性和临床研究提供支持。将[14C]利伐沙班与大鼠、犬和人类的肝微粒体及肝细胞一起孵育。通过高效液相色谱 - (14C)串联质谱分析样品,以生成代谢物谱并推测或确认所形成代谢物的结构。体外代谢物谱显示不同物种之间无主要差异。在所有物种中鉴定出的主要氧化代谢途径是吗啉酮部分的羟基化(M - 2、M - 3和M - 8),恶唑烷酮部分的羟基化程度较低(M - 9)。M - 2是所有微粒体孵育中的主要代谢物。M - 1是由M - 2进一步氧化形成的吗啉酮环开环产物,是所有肝细胞孵育中的主要代谢物。其他途径包括吗啉酮环的酰胺水解(M - 7)以及氯噻吩酰胺部分的酰胺水解(M - 13和M - 15)。在肝细胞中,M - 13很容易与甘氨酸结合,生成M - 4。对未标记的M - 15的代谢命运进行了单独研究。用人肝微粒体和肝细胞进行的孵育表明,M - 15首先被氧化为醛中间体M - 16,随后被还原为M - 17(醇)或氧化为M - 18(羧酸)。未发现氯噻吩部分本身发生代谢。总体而言,利伐沙班在代谢方面无物种差异,具有不同的独立代谢途径,且未形成反应性代谢物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验