Suppr超能文献

通过片段的物理模拟预测天然蛋白质中的肽结构。

Predicting peptide structures in native proteins from physical simulations of fragments.

作者信息

Voelz Vincent A, Shell M Scott, Dill Ken A

机构信息

Department of Chemistry, Stanford University, Stanford, CA, USA.

出版信息

PLoS Comput Biol. 2009 Feb;5(2):e1000281. doi: 10.1371/journal.pcbi.1000281. Epub 2009 Feb 6.

Abstract

It has long been proposed that much of the information encoding how a protein folds is contained locally in the peptide chain. Here we present a large-scale simulation study designed to examine the extent to which conformations of peptide fragments in water predict native conformations in proteins. We perform replica exchange molecular dynamics (REMD) simulations of 872 8-mer, 12-mer, and 16-mer peptide fragments from 13 proteins using the AMBER 96 force field and the OBC implicit solvent model. To analyze the simulations, we compute various contact-based metrics, such as contact probability, and then apply Bayesian classifier methods to infer which metastable contacts are likely to be native vs. non-native. We find that a simple measure, the observed contact probability, is largely more predictive of a peptide's native structure in the protein than combinations of metrics or multi-body components. Our best classification model is a logistic regression model that can achieve up to 63% correct classifications for 8-mers, 71% for 12-mers, and 76% for 16-mers. We validate these results on fragments of a protein outside our training set. We conclude that local structure provides information to solve some but not all of the conformational search problem. These results help improve our understanding of folding mechanisms, and have implications for improving physics-based conformational sampling and structure prediction using all-atom molecular simulations.

摘要

长期以来,人们一直认为,编码蛋白质折叠方式的大部分信息都局部包含在肽链中。在此,我们展示了一项大规模模拟研究,旨在检验水中肽片段的构象在多大程度上能够预测蛋白质中的天然构象。我们使用AMBER 96力场和OBC隐式溶剂模型,对来自13种蛋白质的872个8聚体、12聚体和16聚体肽片段进行了副本交换分子动力学(REMD)模拟。为了分析模拟结果,我们计算了各种基于接触的指标,如接触概率,然后应用贝叶斯分类方法来推断哪些亚稳态接触可能是天然的或非天然的。我们发现,一个简单的指标,即观察到的接触概率,在很大程度上比指标组合或多体成分更能预测肽在蛋白质中的天然结构。我们最好的分类模型是逻辑回归模型,对于8聚体,其正确分类率可达63%;对于12聚体,可达71%;对于16聚体,可达76%。我们在训练集之外的蛋白质片段上验证了这些结果。我们得出结论,局部结构提供了一些但不是全部解决构象搜索问题的信息。这些结果有助于增进我们对折叠机制的理解,并对改进基于物理的构象采样和使用全原子分子模拟的结构预测具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7636/2629132/2188108abdbe/pcbi.1000281.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验