Department of Chemistry and Biochemistry and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA.
Biochemistry. 2009 Mar 3;48(8):1663-74. doi: 10.1021/bi802324w.
Naturally existing biological systems, from the simplest unicellular diatom to the most sophisticated organ such as the human brain, are functional self-assembled architectures. Scientists have long been dreaming about building artificial nanostructures that can mimic such elegance in nature. Structural DNA nanotechnology, which uses DNA as a blueprint and building material to organize matter with nanometer precision, represents an appealing solution to this challenge. On the basis of the knowledge of helical DNA structure and Watson-Crick base pairing rules, scientists have constructed a number of DNA nanoarchitectures with a large variety of geometries, topologies, and periodicities with considerably high yields. Modified by functional groups, those DNA nanostructures can serve as scaffolds to control the positioning of other molecular species, which opens opportunities to study intermolecular synergies, such as protein-protein interactions, as well as to build artificial multicomponent nanomachines. In this review, we summarize the principle of DNA self-assembly, describe the exciting progress of structural DNA nanotechnology in recent years, and discuss the current frontier.
自然界存在的生物体系,从最简单的单细胞硅藻到最复杂的器官如人脑,都是具有功能的自组装结构。科学家们一直梦想着构建能够模拟自然界这种优雅的人工纳米结构。结构 DNA 纳米技术使用 DNA 作为蓝图和建筑材料,以纳米级精度组织物质,是解决这一挑战的一种有吸引力的方法。基于对螺旋 DNA 结构和 Watson-Crick 碱基配对规则的认识,科学家们已经构建了许多具有多种几何形状、拓扑结构和周期性的 DNA 纳米结构,其产率相当高。经过功能基团的修饰,这些 DNA 纳米结构可以作为支架来控制其他分子物种的定位,这为研究分子间协同作用(如蛋白质-蛋白质相互作用)以及构建人工多组分纳米机器提供了机会。在这篇综述中,我们总结了 DNA 自组装的原理,描述了近年来结构 DNA 纳米技术的令人兴奋的进展,并讨论了当前的前沿。