Goodman Russell P, Heilemann Mike, Doose Sören, Erben Christoph M, Kapanidis Achillefs N, Turberfield Andrew J
Nat Nanotechnol. 2008 Feb;3(2):93-6. doi: 10.1038/nnano.2008.3. Epub 2008 Feb 3.
DNA nanotechnology makes use of the exquisite self-recognition of DNA in order to build on a molecular scale. Although static structures may find applications in structural biology and computer science, many applications in nanomedicine and nanorobotics require the additional capacity for controlled three-dimensional movement. DNA architectures can span three dimensions and DNA devices are capable of movement, but active control of well-defined three-dimensional structures has not been achieved. We demonstrate the operation of reconfigurable DNA tetrahedra whose shapes change precisely and reversibly in response to specific molecular signals. Shape changes are confirmed by gel electrophoresis and by bulk and single-molecule Förster resonance energy transfer measurements. DNA tetrahedra are natural building blocks for three-dimensional construction; they may be synthesized rapidly with high yield of a single stereoisomer, and their triangulated architecture conveys structural stability. The introduction of shape-changing structural modules opens new avenues for the manipulation of matter on the nanometre scale.
DNA纳米技术利用DNA精确的自我识别能力,在分子尺度上进行构建。尽管静态结构可能在结构生物学和计算机科学中找到应用,但纳米医学和纳米机器人技术中的许多应用需要具备可控三维运动的额外能力。DNA结构可以跨越三个维度,DNA装置也能够运动,但尚未实现对明确三维结构的主动控制。我们展示了可重构DNA四面体的操作,其形状会根据特定分子信号精确且可逆地发生变化。通过凝胶电泳以及体相和单分子Förster共振能量转移测量证实了形状变化。DNA四面体是三维构建的天然构件;它们可以快速合成,且单一立体异构体的产率很高,其三角结构赋予了结构稳定性。引入可改变形状的结构模块为纳米尺度上的物质操纵开辟了新途径。